Drug Discovery and Development

  • Home Drug Discovery and Development
  • Drug Discovery
  • Women in Pharma and Biotech
  • Oncology
  • Neurological Disease
  • Infectious Disease
  • Resources
    • Video features
    • Podcast
    • Webinars
  • Pharma 50
    • 2025 Pharma 50
    • 2024 Pharma 50
    • 2023 Pharma 50
    • 2022 Pharma 50
    • 2021 Pharma 50
  • Advertise
  • SUBSCRIBE

New Hope In Old Vaccines

By Drug Discovery Trends Editor | August 3, 2015

The Anc80 virus delivers genes to the mouse retina that fluoresce green when expressed. Pictured here, the delivered genes are active in the retina’s color-detecting cells. Credit: Livia Carvalho Harvard Stem Cell Institute (HSCI) researchers at Massachusetts Eye and Ear (MEE) have reconstructed an ancient virus that is highly effective at delivering gene therapies to the liver, muscle, and retina. The discovery, published this week in Cell Reports, has the potential to advance gene therapies that are not only safer and more potent than available therapies, but also to help a greater number of patients.
 
“We believe our findings will teach us how complex biological structures, such as AAVs [adeno-associated viruses], are built,” said Luk H. Vandenberghe, an HSCI affiliated faculty member and senior author of the study. “From this knowledge, we hope to design next-generation viruses for use as vectors in gene therapy.”
 
A virus can be an ideal delivery system for gene therapy. In order to survive, a virus must infiltrate a host organism undetected and transfer its genetic material into the cells, where it will use the host to replicate and proliferate. Taking advantage of this process, researchers can insert therapeutic genes into a virus, then use the virus to shuttle the genes to the appropriate cells or tissues inside a human body.
 
So far, AAVs used for gene therapy have been chosen from viruses that naturally circulate throughout the human population. If people have been exposed to the virus, their bodies will likely recognize it, mount an attack, and destroy it before it can deliver the therapy. Engineering new, benign viruses could render the viruses unrecognizable and increase the number of people for whom a given gene therapy will work.
 
However, efforts to engineer improved AAVs have been stymied by their intricate structure. Like pieces of a puzzle, every protein in the shell of a virus must fit together perfectly for the virus to function normally. Altering proteins in one part of the virus to achieve a certain benefit, such as more efficient gene transfer or reduced recognition by host immune cells, could end up destroying the structural integrity of the entire shell.
 
To overcome this challenge, Vandenberghe, along with colleagues at Harvard Medical School, Schepens Eye Research Institute, and MEE, turned to evolutionary history for guidance. Over time, AAV ancestors underwent a series of changes that retained the structural integrity of the virus while slightly altering some of its functions. The researchers were able to recreate an evolutionary timeline of the changes and build nine synthetic ancestor viruses in the laboratory. When injected into mice, the most ancient of these, Anc80, successfully targeted the liver, muscle, and retina without producing toxic side effects.
 
In future studies, the researchers will characterize the interplay between the virus and host throughout evolution and continue to seek improved vectors for clinical applications. They will also examine the potential of Anc80 for treating liver diseases and retinal forms of blindness. “The vectors developed and characterized in this study demonstrate unique and potent biology that justify their consideration for gene therapy applications,” Vandenberghe said.
 
Source: Harvard University

Filed Under: Genomics/Proteomics

 

Related Articles Read More >

Spatial biology: Transforming our understanding of cellular environments
DNA double helix transforming into bar graphs, blue and gold, crisp focus on each strand, scientific finance theme --ar 5:4 --personalize 3kebfev --v 6.1 Job ID: f40101e1-2e2f-4f40-8d57-2144add82b53
Biotech in 2025: Precision medicine, smarter investments, and more emphasis on RWD in clinical trials
DNA helix 3D illustration. Mutations under microscope. Decoding genome. Virtual modeling of chemical processes. Hi-tech in medicine
Genomics in 2025: How $500 whole genome sequencing could democratize genomic data
A media release and Scientific Report image of Elizabeth Kellogg. - Camera Settings: ILCE-9M2, 12mm, ISO 1000, 1/80, f/3.2, Fri, 04-19-2024 at 10:10. v.12.01.23
St. Jude pioneers gene editing and structural biology to advance pediatric research
“ddd
EXPAND YOUR KNOWLEDGE AND STAY CONNECTED
Get the latest news and trends happening now in the drug discovery and development industry.

MEDTECH 100 INDEX

Medtech 100 logo
Market Summary > Current Price
The MedTech 100 is a financial index calculated using the BIG100 companies covered in Medical Design and Outsourcing.
Drug Discovery and Development
  • MassDevice
  • DeviceTalks
  • Medtech100 Index
  • Medical Design Sourcing
  • Medical Design & Outsourcing
  • Medical Tubing + Extrusion
  • Subscribe to our E-Newsletter
  • Contact Us
  • About Us
  • R&D World
  • Drug Delivery Business News
  • Pharmaceutical Processing World

Copyright © 2025 WTWH Media LLC. All Rights Reserved. The material on this site may not be reproduced, distributed, transmitted, cached or otherwise used, except with the prior written permission of WTWH Media
Privacy Policy | Advertising | About Us

Search Drug Discovery & Development

  • Home Drug Discovery and Development
  • Drug Discovery
  • Women in Pharma and Biotech
  • Oncology
  • Neurological Disease
  • Infectious Disease
  • Resources
    • Video features
    • Podcast
    • Webinars
  • Pharma 50
    • 2025 Pharma 50
    • 2024 Pharma 50
    • 2023 Pharma 50
    • 2022 Pharma 50
    • 2021 Pharma 50
  • Advertise
  • SUBSCRIBE