Drug Discovery and Development

  • Home Drug Discovery and Development
  • Drug Discovery
  • Women in Pharma and Biotech
  • Oncology
  • Neurological Disease
  • Infectious Disease
  • Resources
    • Video features
    • Podcast
    • Voices
    • Views
    • Webinars
  • Pharma 50
    • 2025 Pharma 50
    • 2024 Pharma 50
    • 2023 Pharma 50
    • 2022 Pharma 50
    • 2021 Pharma 50
  • Advertise
  • SUBSCRIBE

Life-threatening Gene Defect Located

By Drug Discovery Trends Editor | November 12, 2007

A research team led by scientists at The University of Texas Medical School at Houston has identified a defective gene that affects vascular smooth-muscle cells in people who suffer from hereditary thoracic aortic disease, which can kill victims with little warning in the prime of their lives. The study, “Mutations in Smooth Muscle Alpha-Actin (ACTA2) Lead to Thoracic Aortic Aneurysms and Dissections,” appears in Nature Genetics.

Research on 14 families with 93 members from across the United States, along with Europe and Australia, led the team to a mutation in the smooth muscle cell alpha-actin (ACTA2), which affects muscular contractions in other blood vessels and the aorta. The wall of the aorta, the main blood vessel leading out of the heart, weakens and then enlarges, forming an aneurysm and ultimately leading to an aortic dissection, which often causes sudden death.

“Our results suggest that contraction of the smooth muscle cells in the aorta is important in keeping it healthy and preventing the disease,” said the study’s senior author, Dianna M. Milewicz, M.D., Ph.D., professor and director of the Division of Medical Genetics at the UT Medical School. “This information provides insight into the cause of this condition and helps us understand, for the first time, the pathology of the aortic wall degeneration.”

Milewicz said that mutations in ACTA2 account for 14 percent of the inherited form of thoracic aortic aneurysms and dissections, making it the major gene identified for this condition.

Release date: November 11, 2007
Source: University of Texas Medical School at Houston


Filed Under: Genomics/Proteomics

 

Related Articles Read More >

Spatial biology: Transforming our understanding of cellular environments
DNA double helix transforming into bar graphs, blue and gold, crisp focus on each strand, scientific finance theme --ar 5:4 --personalize 3kebfev --v 6.1 Job ID: f40101e1-2e2f-4f40-8d57-2144add82b53
Biotech in 2025: Precision medicine, smarter investments, and more emphasis on RWD in clinical trials
DNA helix 3D illustration. Mutations under microscope. Decoding genome. Virtual modeling of chemical processes. Hi-tech in medicine
Genomics in 2025: How $500 whole genome sequencing could democratize genomic data
A media release and Scientific Report image of Elizabeth Kellogg. - Camera Settings: ILCE-9M2, 12mm, ISO 1000, 1/80, f/3.2, Fri, 04-19-2024 at 10:10. v.12.01.23
St. Jude pioneers gene editing and structural biology to advance pediatric research
“ddd
EXPAND YOUR KNOWLEDGE AND STAY CONNECTED
Get the latest news and trends happening now in the drug discovery and development industry.

MEDTECH 100 INDEX

Medtech 100 logo
Market Summary > Current Price
The MedTech 100 is a financial index calculated using the BIG100 companies covered in Medical Design and Outsourcing.
Drug Discovery and Development
  • MassDevice
  • DeviceTalks
  • Medtech100 Index
  • Medical Design Sourcing
  • Medical Design & Outsourcing
  • Medical Tubing + Extrusion
  • Subscribe to our E-Newsletter
  • Contact Us
  • About Us
  • R&D World
  • Drug Delivery Business News
  • Pharmaceutical Processing World

Copyright © 2025 WTWH Media LLC. All Rights Reserved. The material on this site may not be reproduced, distributed, transmitted, cached or otherwise used, except with the prior written permission of WTWH Media
Privacy Policy | Advertising | About Us

Search Drug Discovery & Development

  • Home Drug Discovery and Development
  • Drug Discovery
  • Women in Pharma and Biotech
  • Oncology
  • Neurological Disease
  • Infectious Disease
  • Resources
    • Video features
    • Podcast
    • Voices
    • Views
    • Webinars
  • Pharma 50
    • 2025 Pharma 50
    • 2024 Pharma 50
    • 2023 Pharma 50
    • 2022 Pharma 50
    • 2021 Pharma 50
  • Advertise
  • SUBSCRIBE