Drug Discovery and Development

  • Home Drug Discovery and Development
  • Drug Discovery
  • Women in Pharma and Biotech
  • Oncology
  • Neurological Disease
  • Infectious Disease
  • Resources
    • Video features
    • Podcast
    • Voices
    • Views
    • Webinars
  • Pharma 50
    • 2025 Pharma 50
    • 2024 Pharma 50
    • 2023 Pharma 50
    • 2022 Pharma 50
    • 2021 Pharma 50
  • Advertise
  • SUBSCRIBE

DNA Discovery Could Help Shed Light on Rare Childhood Disorder

By University of Edinburgh | September 25, 2017

New insights into how our cells store and manage DNA during cell division could help point towards the causes of a rare developmental condition.

The findings may also help researchers understand how genes are turned on in a process linked to Cornelia de Lange syndrome – a severe condition that thwarts physical and intellectual development in children.

Scientists showed how proteins in cells work together to package DNA and ensure that it is correctly passed on – in the form of parcels called chromosomes – to new cells that are formed during cell division.

Researchers from the University of Edinburgh and Harvard University set out to better understand how the proteins that carry out these complex tasks work together.

Their study built on previous research that examined how yeast cells – which are used as model organisms – are able to carry out cell divisions without errors.

The team applied imaging technology and genetic analysis to yeast cells to map the molecular interactions involved.

Their findings shows how proteins associated with chromosomes work to set up an environment that ensures careful maintenance of the genetic material.

These proteins carry out a strategy in which biochemical components in the cell designate sections of DNA at which proteins are recruited to organise the genetic material. The results showed the importance of careful timing in this series of steps.

Their study, funded by Wellcome and the Howard Hughes Medical Institute, was published in Cell.

Dr Adele Marston, of the University of Edinburgh’s School of Biological Sciences, who took part in the study, said: “For the first time, we’ve been able to demonstrate biological mechanisms that underpin the organisation of specific pieces of DNA at the right time.

“This is a vitally important process for healthy cell division and to ensure that our genetic material functions correctly. This outcome has the potential to influence how scientists think about important unsolved problems in human biology.”


Filed Under: Genomics/Proteomics

 

Related Articles Read More >

Columbia-CZ team develops 10.3M parameter model that outperforms 100M parameter rivals on cell type classification
Spatial biology: Transforming our understanding of cellular environments
DNA double helix transforming into bar graphs, blue and gold, crisp focus on each strand, scientific finance theme --ar 5:4 --personalize 3kebfev --v 6.1 Job ID: f40101e1-2e2f-4f40-8d57-2144add82b53
Biotech in 2025: Precision medicine, smarter investments, and more emphasis on RWD in clinical trials
DNA helix 3D illustration. Mutations under microscope. Decoding genome. Virtual modeling of chemical processes. Hi-tech in medicine
Genomics in 2025: How $500 whole genome sequencing could democratize genomic data
“ddd
EXPAND YOUR KNOWLEDGE AND STAY CONNECTED
Get the latest news and trends happening now in the drug discovery and development industry.

MEDTECH 100 INDEX

Medtech 100 logo
Market Summary > Current Price
The MedTech 100 is a financial index calculated using the BIG100 companies covered in Medical Design and Outsourcing.
Drug Discovery and Development
  • MassDevice
  • DeviceTalks
  • Medtech100 Index
  • Medical Design Sourcing
  • Medical Design & Outsourcing
  • Medical Tubing + Extrusion
  • Subscribe to our E-Newsletter
  • Contact Us
  • About Us
  • R&D World
  • Drug Delivery Business News
  • Pharmaceutical Processing World

Copyright © 2025 WTWH Media LLC. All Rights Reserved. The material on this site may not be reproduced, distributed, transmitted, cached or otherwise used, except with the prior written permission of WTWH Media
Privacy Policy | Advertising | About Us

Search Drug Discovery & Development

  • Home Drug Discovery and Development
  • Drug Discovery
  • Women in Pharma and Biotech
  • Oncology
  • Neurological Disease
  • Infectious Disease
  • Resources
    • Video features
    • Podcast
    • Voices
    • Views
    • Webinars
  • Pharma 50
    • 2025 Pharma 50
    • 2024 Pharma 50
    • 2023 Pharma 50
    • 2022 Pharma 50
    • 2021 Pharma 50
  • Advertise
  • SUBSCRIBE