Drug Discovery and Development

  • Home Drug Discovery and Development
  • Drug Discovery
  • Women in Pharma and Biotech
  • Oncology
  • Neurological Disease
  • Infectious Disease
  • Resources
    • Video features
    • Podcast
    • Webinars
  • Pharma 50
    • 2025 Pharma 50
    • 2024 Pharma 50
    • 2023 Pharma 50
    • 2022 Pharma 50
    • 2021 Pharma 50
  • Advertise
  • SUBSCRIBE

Vehicle Peptide Discovery Opens Up New Drug Delivery Route

By Tokyo Medical and Dental University | June 27, 2018

In the field of anti-cancer therapeutics, cationic antimicrobial peptides (AMPs) have gained prominence because of their cytotoxic and anticancer activity in drug-resistant cancer cells. Peptides are compounds consisting of two or more amino acids linked in a chain. 

A membrane impermeable proapoptotic domain (PAD) peptide [KLAKLAK]2 is known to be an antimicrobial agent and to cause mitochondrial membrane disruption, followed by cell death. Most AMPs including PAD have antitumor functions because of a multifunctional host defense system of multicellular organisms; however, they cannot penetrate cell membranes, and alone, they have little cytotoxicity.

Previous studies have shown PAD peptides entering cells by their conjugation with cell-penetrating peptides (CPPs). Particularly, a team of Tokyo Medical and Dental University (TMDU) researchers has shown a cyclic decapeptide, termed peptide 1, mimics the dimerization arm of the EGF receptor (EGFR). EGFR is involved in cellular signal transductions and cancer progression, and is overexpressed in many cancer cells. Hence, binding of peptide 1 to EGFR could potentially retard cancer growth.

This is a cyclic decapeptide, which mimics the dimerization arm of the EGF receptor (EGFR), was previously found to be captured into cells. The authors have found the promising potential of this peptide as an intracellular delivery vehicle directed to EGFR-positive cells. The cellular delivery of the proapoptotic domain (PAD) peptide was challenged by conjugation with the above cyclic peptide. The cellular uptake of the conjugated peptide, which was composed of the cyclic peptide, the PAD peptide and a linker cleavable with a protease, was evaluated by treatment of EGFR-positive cells. Significant suppression of proliferation by the conjugated peptide was shown in a cell viability assay. (Credit: Department of Medicinal Chemistry, TMDU)

In its latest study, the team aimed to verify the selectivity of peptide 1 to EGFR and investigated its efficacy as a vehicle for intracellular delivery to cells. The researchers reported their study in Bioconjugate Chemistry.

“As a proof-of-concept study, the cellular delivery of the PAD peptide was challenged by conjugation with peptide 1,” study first author Kei Toyama explains. “The cellular uptake of a conjugated peptide 2, composed of peptide 1, the PAD peptide, and a linker cleavable with a protease, was evaluated by treatment of an EGFR-positive lung cancer cell line.” 

Significant suppression of proliferation by peptide 2 was observed in cell viability assays, whereas conjugate 3, which does not contain peptide 1, had no significantly inhibitory activity in the cell lines. Notably, the PAD peptide alone had no effect on the cells.

“Our findings suggest peptide 1 is a promising lead compound as a new intracellular delivery vehicle for therapeutically effective peptides,” senior author Hirokazu Tamamura says. “Also, conjugate 2, with its apoptosis induction activity, can be explored as a new apoptotic peptide that could contribute to the development of anticancer reagents based on the AMP functions.”

(Source: EurekAlert!)


Filed Under: Drug Discovery

 

Related Articles Read More >

Lokavant’s Spectrum v15 uses AI to cut trial-feasibility modeling from weeks to minutes
Prime time for peptide-based drug discovery 
Why smaller, simpler molecular glues are gaining attention in drug discovery
Glass vial, pipette and woman scientist in laboratory for medical study, research or experiment. Test tube, dropper and professional female person with chemical liquid for pharmaceutical innovation
Unlocking ‘bench-to-bedside’ discoveries requires better data sharing and collaboration
“ddd
EXPAND YOUR KNOWLEDGE AND STAY CONNECTED
Get the latest news and trends happening now in the drug discovery and development industry.

MEDTECH 100 INDEX

Medtech 100 logo
Market Summary > Current Price
The MedTech 100 is a financial index calculated using the BIG100 companies covered in Medical Design and Outsourcing.
Drug Discovery and Development
  • MassDevice
  • DeviceTalks
  • Medtech100 Index
  • Medical Design Sourcing
  • Medical Design & Outsourcing
  • Medical Tubing + Extrusion
  • Subscribe to our E-Newsletter
  • Contact Us
  • About Us
  • R&D World
  • Drug Delivery Business News
  • Pharmaceutical Processing World

Copyright © 2025 WTWH Media LLC. All Rights Reserved. The material on this site may not be reproduced, distributed, transmitted, cached or otherwise used, except with the prior written permission of WTWH Media
Privacy Policy | Advertising | About Us

Search Drug Discovery & Development

  • Home Drug Discovery and Development
  • Drug Discovery
  • Women in Pharma and Biotech
  • Oncology
  • Neurological Disease
  • Infectious Disease
  • Resources
    • Video features
    • Podcast
    • Webinars
  • Pharma 50
    • 2025 Pharma 50
    • 2024 Pharma 50
    • 2023 Pharma 50
    • 2022 Pharma 50
    • 2021 Pharma 50
  • Advertise
  • SUBSCRIBE