Drug Discovery and Development

  • Home Drug Discovery and Development
  • Drug Discovery
  • Women in Pharma and Biotech
  • Oncology
  • Neurological Disease
  • Infectious Disease
  • Resources
    • Video features
    • Podcast
    • Webinars
  • Pharma 50
    • 2025 Pharma 50
    • 2024 Pharma 50
    • 2023 Pharma 50
    • 2022 Pharma 50
    • 2021 Pharma 50
  • Advertise
  • SUBSCRIBE

Targets, Tests May Develop Treatments for Memory Disorders

By Drug Discovery Trends Editor | November 12, 2014

neurons, transferring pulses and generating information.In a pair of related studies, scientists from the Florida campus of The Scripps Research Institute (TSRI) have identified a number of new therapeutic targets for memory disorders and have developed a new screening test to uncover compounds that may one day work against those disorders.
 
The two studies, one published in the journal Proceedings of the National Academy of Sciences (PNAS), the other in the journal ASSAY and Drug Development Technologies, could lead new approaches to some of the most problematic diseases facing a rapidly aging world population, including Alzheimer’s and Huntington’s diseases and dementia.
 
“We are actively looking at molecules critical to memory formation, so these two studies work in parallel,” said Sathyanarayanan V. Puthanveettil, a TSRI biologist who led both studies. “In one study, we’re reaching for a basic understanding of the process, and in the other, we’re finding new ways to identify drug candidates so that we can cure these diseases.”
 
Unlocking the ‘Synaptic Proteome’
 
The PNAS study is one of the first detailed descriptions of the proteins that are transported to the synapses, which as a group are called the “synaptic proteome.” Synapses are the part of a nerve cell (neuron) that passes electrochemical signals to other cells during functions such as memory storage. This new approach has the potential to advance our understanding of how synapses work, how their composition changes with learning and how brain diseases might affect them.
 
“We know these molecules function in the synapse, and if we can regulate their function there may be some very good therapeutic opportunities there,” Puthanveettil said.
 
The study focuses on kinesin, a molecular motor protein that plays a role in the transport of other proteins throughout a cell.
 
Analyzing three kinesin complexes, the researchers found that approximately 40% to 50% of the protein cargos were synaptic proteins—and that the identity and location of these kinesins determine which proteins they transport. These results reveal a previously underappreciated role of kinesins in regulating the composition of the entire synaptic proteome.
 
Interestingly, a bioinformatics analysis revealed the three kinesin cargo complexes examined in the study are involved in neurologic diseases. Approximately 60 cargos (out of 155) of the kinesin Kif5C are implicated in psychiatric disorders, while around 20 cargos of another kinesin Kif3A are implicated in developmental disorders.
 
“This shows for the first time how kinesins expressed in the same neurons can carry substantially different cargos,” said Research Associate Xin-An Liu, the first author of the study. “We can use this approach to identify what molecules may be targeted for memory and in major disorders. The next step is to find how the synaptic proteome changes in neuropsychiatric diseases.”
 
Toward New Drug Candidates
 
In the ASSAY study, Puthanveettil and his colleagues describe their new high-throughput screening test for discovering potential drug candidates based on kinesin and axonal transport for the treatment of memory disorders.
 
“The luminescence-based assay that we developed is highly reproducible and robust,” said Puthanveetil.
 
Using the approach, the team screened a compound collection and identified a number of small molecules that turned on or off activity of a human kinesin.
 
Source: Scripps Institute

Filed Under: Drug Discovery

 

Related Articles Read More >

Lokavant’s Spectrum v15 uses AI to cut trial-feasibility modeling from weeks to minutes
Prime time for peptide-based drug discovery 
Why smaller, simpler molecular glues are gaining attention in drug discovery
Glass vial, pipette and woman scientist in laboratory for medical study, research or experiment. Test tube, dropper and professional female person with chemical liquid for pharmaceutical innovation
Unlocking ‘bench-to-bedside’ discoveries requires better data sharing and collaboration
“ddd
EXPAND YOUR KNOWLEDGE AND STAY CONNECTED
Get the latest news and trends happening now in the drug discovery and development industry.

MEDTECH 100 INDEX

Medtech 100 logo
Market Summary > Current Price
The MedTech 100 is a financial index calculated using the BIG100 companies covered in Medical Design and Outsourcing.
Drug Discovery and Development
  • MassDevice
  • DeviceTalks
  • Medtech100 Index
  • Medical Design Sourcing
  • Medical Design & Outsourcing
  • Medical Tubing + Extrusion
  • Subscribe to our E-Newsletter
  • Contact Us
  • About Us
  • R&D World
  • Drug Delivery Business News
  • Pharmaceutical Processing World

Copyright © 2025 WTWH Media LLC. All Rights Reserved. The material on this site may not be reproduced, distributed, transmitted, cached or otherwise used, except with the prior written permission of WTWH Media
Privacy Policy | Advertising | About Us

Search Drug Discovery & Development

  • Home Drug Discovery and Development
  • Drug Discovery
  • Women in Pharma and Biotech
  • Oncology
  • Neurological Disease
  • Infectious Disease
  • Resources
    • Video features
    • Podcast
    • Webinars
  • Pharma 50
    • 2025 Pharma 50
    • 2024 Pharma 50
    • 2023 Pharma 50
    • 2022 Pharma 50
    • 2021 Pharma 50
  • Advertise
  • SUBSCRIBE