Viruses have been present for billions of years, affecting the gamut of life from single celled to multicellular organisms. But these diminutive infectious agents don’t leave behind fossils. Therefore, understanding their origin and evolution has proven difficult.
However, researchers from Boston College have traced the spread of an ancient group of retroviruses—known as ERV-Fc—that affected 28 of 50 studied mammalian ancestors between 15 and 30 million years ago.
“Over the course of millions of years, genetic sequences from the viruses accumulate in the DNA genomes of living organisms (including humans),” the researchers wrote in their paper appearing in eLife. “These sequences can serve as molecular ‘fossils’ for exploring the natural history of viruses and their hosts.”
Retroviruses affect various populations, and included in that group are immunodeficiency viruses, such as HIV-1 and HIV-2, and T-cell leukemia viruses.
The ancient viruses studied “affected a diverse range of hosts, including carnivores, rodents and primates,” the researchers wrote. “The distribution of ERV-Fc among different mammals indicates that the viruses spread to every continent except Antarctica and Australia, and that they jumped between species more than 20 times.”
The ERV-Fc virus was traced to the beginning of the Oligocene Epoch, which was marked by the first appearance of elephants with trunks, early horses, and extensive grasslands, according to the Univ. of California Museum of Paleontology.
In order to trace the virus group, the researchers searched mammalian genome sequence databases for ERV-Fc loci, and then “reconstructed the sequences of proteins representing the virus that colonized the ancestors of that particular species,” according to eLife.
The researchers also followed the changing patterns in the ERV-Fc viruses’ genes as it adapted to various hosts.
“As part of this process, the viruses often exchanged genes with each other and with other types of viruses,” the researchers wrote. “Such genetic recombination is likely to have played a significant role in the evolutionary success of the ERV-Fc viruses.”
According to study co-author William E. Diehl, the research may help humanity predict the long-term effects of viral infections, and the future evolution of such organisms.
Filed Under: Drug Discovery