Drug Discovery and Development

  • Home Drug Discovery and Development
  • Drug Discovery
  • Genomics/Proteomics
  • Oncology
  • Neurological Disease
  • Infectious Disease
  • R&D 100 Awards
  • Pharma 50
    • 2022 Pharma 50
    • 2021 Pharma 50

Powdered Cranberry Combats Colon Cancer in Mice

By Drug Discovery Trends Editor | August 24, 2015

Cranberries are often touted as a way to protect against urinary tract infections, but that may be just the beginning. Researchers fed cranberry extracts to mice with colon cancer and found that the tumors diminished in size and number. Identifying the therapeutic molecules in the tart fruit could lead to a better understanding of its anti-cancer potential, they say.
 
The team will describe their approach in one of more than 9,000 presentations at the 250th National Meeting & Exposition of the American Chemical Society (ACS), the world’s largest scientific society, taking place here through Thursday.
 
According to the American Cancer Society, one in 20 Americans will develop colon cancer at some point in his or her lifetime. While progress has been made on the detection and treatment of colon cancer, it remains the second leading cause of cancer-related deaths in the U.S.
 
Colon cancer may offer a particularly good target for a dietary treatment, says Catherine Neto, Ph.D., simply due to the anatomy of digestion. “Cranberry extracts may also afford protection toward other cancers, but it seems reasonable to look at colon cancer,” she says. “Cranberry constituents and metabolites should be bioavailable to the colon as digestion proceeds.”
 
In previous studies, Neto and colleagues at the University of Massachusetts, Dartmouth, found that chemicals derived from cranberry extracts could selectively kill off colon tumor cells in laboratory dishes. “We’ve identified several compounds in cranberry extracts over the years that seemed promising, but we’ve always wanted to look at what happens with the compounds in an animal model of cancer,” Neto says. This led to a collaboration with Hang Xiao, Ph.D., of the University of Massachusetts, Amherst. His team had developed a mouse model that mimics the type of colon cancer associated with colitis, an inflammatory bowel condition that affects hundreds of thousands of people in the U.S.
 
For Neto’s part, her team generated three powdered cranberry extracts: a whole fruit powder, an extract containing only the cranberry polyphenols, and one containing only the non-polyphenol components of the fruit. Some evidence suggests that polyphenols have anti-inflammatory properties, and she wanted to assess their contribution to the cranberry’s overall impact.
 
The researchers mixed the cranberry extracts into the meals of mice with colon cancer. She notes that the mice do not seem to mind the tart flavor. After 20 weeks, the mice given the whole cranberry extract had about half the number of tumors as mice that received no cranberry in their chow. The remaining tumors in the cranberry-fed mice were also smaller. Plus, the cranberry extracts seemed to reduce the levels of inflammation markers in the mice.
 
“Basically, what we found was pretty encouraging. All preparations were effective to some degree, but the whole cranberry extract was the most effective,” says Neto. “There may be some synergy between polyphenol and non-polyphenol constituents.” Neto’s graduate student Sarah Frade will present the work at the ACS meeting.
 
In the study, the researchers were careful not to give the mice an absurd amount of cranberry. “This is approximately equivalent to a cup a day of cranberries if you were a human instead of a mouse,” Neto says. However, she’s not sure someone could get the same benefits from juice, which lacks some of the components in the skin of the cranberry.
 
Currently, Neto is looking deeper into the cranberry to see if she can isolate individual components responsible for its anti-cancer properties. The researchers are also analyzing the metabolites in the mice that consumed the fruit extracts to better understand what happens due to mouse metabolism after the cranberry components are digested.
 
Neto acknowledges funding from the UMass President’s Science and Technology Initiative.
 
This research will be presented at a meeting of the American Chemical Society.
 
Source: ACS

Filed Under: Drug Discovery

 

Related Articles Read More >

Takeda Pharmaceutical in the Drug Discovery & Development Pharma 50
Takeda’s Takhzyro fares well in pediatric hereditary angioedema study
Novartis in the Pharma 50
Novartis to cut up to 8,000 positions
Gilead Sciences in the Drug Discovery & Development Pharma 50
Gilead resubmits application to FDA for twice-yearly HIV drug lenacapavir
George Floyd mural
How the pandemic and George Floyd made clinical trial diversity a priority

MEDTECH 100 INDEX

Medtech 100 logo
Market Summary > Current Price
The MedTech 100 is a financial index calculated using the BIG100 companies covered in Medical Design and Outsourcing.

Need Drug Discovery news in a minute?

We Deliver!
Drug Discovery & Development Enewsletters get you caught up on all the mission critical news you need. Sign up today.
Enews Signup
Drug Discovery and Development
  • MASSDEVICE
  • DEVICETALKS
  • Medical Design & Outsourcing
  • MEDICAL TUBING + EXTRUSION
  • MEDTECH 100
  • Medical Design Sourcing
  • Subscribe to our Free E-Newsletter
  • Contact Us
  • About Us
  • Advertise With Us
  • R&D World
  • Drug Delivery Business News
  • Pharmaceutical Processing World

Copyright © 2022 WTWH Media LLC. All Rights Reserved. The material on this site may not be reproduced, distributed, transmitted, cached or otherwise used, except with the prior written permission of WTWH Media
Privacy Policy | Advertising | About Us

Search Drug Discovery & Development

  • Home Drug Discovery and Development
  • Drug Discovery
  • Genomics/Proteomics
  • Oncology
  • Neurological Disease
  • Infectious Disease
  • R&D 100 Awards
  • Pharma 50
    • 2022 Pharma 50
    • 2021 Pharma 50