Drug Discovery and Development

  • Home Drug Discovery and Development
  • Drug Discovery
  • Women in Pharma and Biotech
  • Oncology
  • Neurological Disease
  • Infectious Disease
  • Resources
    • Video features
    • Podcast
    • Voices
    • Webinars
  • Pharma 50
    • 2025 Pharma 50
    • 2024 Pharma 50
    • 2023 Pharma 50
    • 2022 Pharma 50
    • 2021 Pharma 50
  • Advertise
  • SUBSCRIBE

NIH Collaboration Helps Advance Potential Zika Treatments

By NIH/NATIONAL CENTER FOR ADVANCING TRANSLATIONAL SCIENCES (NCATS) | August 31, 2016

Researchers at the National Center for Advancing Translational Sciences (NCATS) recently identified compounds that potentially can be used to inhibit Zika virus replication and reduce its ability to kill brain cells. These compounds now can be studied by the broader research community to help combat the Zika public health crisis. NCATS is part of the National Institutes of Health.

Using NCATS’ drug repurposing screening robots, researchers identified two classes of compounds effective against Zika: one is antiviral, and the other prevents Zika-related brain cell death. The compounds include emricasan, an investigational drug currently being evaluated in a clinical trial to reduce liver injury and fibrosis, and niclosamide, a U. S. Food and Drug Administration-approved drug for use in humans to treat worm infections. In addition, the researchers identified nine cyclin-dependent kinase (CDK) inhibitors. CDK usually is involved in regulation of cellular processes as well as normal brain development, but the Zika virus can negatively affect this process.

NCATS’ work was a collaborative effort with Johns Hopkins University, Baltimore, (JHU) and Florida State University, Tallahassee, (FSU), and the study results were published in the August 29 issue of Nature Medicine. The NCATS screening effort builds on the initial research by JHU and FSU scientists, who discovered that the Zika virus infects brain cells early in development. Infection by the Zika virus may be related to fetal microcephaly, an abnormally small head resulting from an underdeveloped and/or damaged brain.

The Zika virus has been reported in 60 countries and territories worldwide; currently, there are no vaccines or effective drug treatments. The virus is spread primarily through bites from infected Aedes aegypti mosquitoes, and in addition, can be transmitted from mother to child and through sexual contact. It also is associated with neurological diseases such as Guillain-Barrée syndrome in infected adults.

“The Zika virus poses a global health threat,” said Anton Simeonov, Ph.D., NCATS scientific director. “While we await the development of effective vaccines, which can take a significant amount of time, our identification of repurposed small molecule compounds may accelerate the translational process of finding a potential therapy.”

NCATS researcher Wei Zheng, Ph.D., and his team led the drug repurposing screen to test three strains of Zika: Asian, African and Puerto Rican. The scientists first developed an assay (test) using caspase 3, a protein that causes brain cell death when infected by the virus. The next step was screening 6,000 FDA-approved and investigational compounds, which resulted in the identification of more than 100 promising compounds. The team then evaluated the protective effect of these compounds in brain cells after Zika virus infection. Three lead compounds, emiracsan, niclosamide and a CDK inhibitor known as PHA-690509, were identified as reducing neuronal cell death caused by Zika virus infection.

These compounds were effective either in inhibiting the replication of Zika or in preventing the virus from killing brain cells. For example, emricasan prevents cell death, and niclosamide and the nine CDK inhibitors stop the virus’ replication. The team also found that emricasan, when combined with one of the CDK inhibitors, prevented both cell death and virus replication. In addition, the team noted that the CDK inhibitors may be useful in treating non-pregnant patients who face an increased risk of Guillain-Barrée syndrome and other conditions sparked by Zika infection.

The researchers cautioned, however, that the use of emricasan and niclosamide during pregnancy for Zika infection will need to be evaluated in pre-clinical toxicology studies and clinical trials.

“Using the NCATS drug repurposing platform for emerging infectious diseases can help rapidly identify potential treatments for urgent needs such as the Zika virus,” Zheng said. “While identifying promising compounds is a first step, our goal at NCATS is to facilitate the translation of these findings for evaluation in the clinic. The release of all the compound screening data in this publication and in the public PubChem database opens the door to the research community to do just that.”

NCATS’ screening effort enabled the broader research team to quickly translate their earlier discoveries toward work to develop treatments for Zika virus infection. JHU is working on a mouse model to study the neuroprotective effects of the compounds identified from the screen and studying the mechanism of action of the lead compounds. FSU is testing the efficacy of these compounds in a Zika virus mouse model and is also studying the mechanism of action of the lead compounds.

To read the full press release, click here. 

Lead image caption: An NCATS researcher dispenses Zika virus (pink liquid) into trays for compound screening. (Photo credit: NCATS.)

Follow us on Twitter and Facebook for updates on the latest pharmaceutical and biopharmaceutical manufacturing news!  


Filed Under: Drug Discovery

 

Related Articles Read More >

Sanders, King target DTC pharma ads but the industry worries more about threats to its $2B R&D model
Zoliflodacin wins FDA nod for treatment of gonorrhea
FDA approved ENFLONSIA for the prevention of RSV in Infants
First clinical study results of Dupixent for atopic dermatitis in patients with darker skin tones 
“ddd
EXPAND YOUR KNOWLEDGE AND STAY CONNECTED
Get the latest news and trends happening now in the drug discovery and development industry.

MEDTECH 100 INDEX

Medtech 100 logo
Market Summary > Current Price
The MedTech 100 is a financial index calculated using the BIG100 companies covered in Medical Design and Outsourcing.
Drug Discovery and Development
  • MassDevice
  • DeviceTalks
  • Medtech100 Index
  • Medical Design Sourcing
  • Medical Design & Outsourcing
  • Medical Tubing + Extrusion
  • Subscribe to our E-Newsletter
  • Contact Us
  • About Us
  • R&D World
  • Drug Delivery Business News
  • Pharmaceutical Processing World

Copyright © 2025 WTWH Media LLC. All Rights Reserved. The material on this site may not be reproduced, distributed, transmitted, cached or otherwise used, except with the prior written permission of WTWH Media
Privacy Policy | Advertising | About Us

Search Drug Discovery & Development

  • Home Drug Discovery and Development
  • Drug Discovery
  • Women in Pharma and Biotech
  • Oncology
  • Neurological Disease
  • Infectious Disease
  • Resources
    • Video features
    • Podcast
    • Voices
    • Webinars
  • Pharma 50
    • 2025 Pharma 50
    • 2024 Pharma 50
    • 2023 Pharma 50
    • 2022 Pharma 50
    • 2021 Pharma 50
  • Advertise
  • SUBSCRIBE