Drug Discovery and Development

  • Home Drug Discovery and Development
  • Drug Discovery
  • Women in Pharma and Biotech
  • Oncology
  • Neurological Disease
  • Infectious Disease
  • Resources
    • Video features
    • Podcast
    • Voices
    • Webinars
  • Pharma 50
    • 2025 Pharma 50
    • 2024 Pharma 50
    • 2023 Pharma 50
    • 2022 Pharma 50
    • 2021 Pharma 50
  • Advertise
  • SUBSCRIBE

New Tool Analyzes Disease And Drug Effects With Unprecedented Accuracy And Consistency

By University at Buffalo | May 11, 2018

A new protein analysis tool developed at the University at Buffalo could vastly increase the speed and precision with which disease and drug effects are analyzed.

The groundbreaking tool, called IonStar, is the first to provide near-perfect accuracy when quantifying and comparing the abundance of proteins in the bodies of people who are healthy and ill.

Compared to industry standard MaxQuant, IonStar improved the measurement consistency of proteins in low abundance and lowered the amount of missing data in results from 17 percent to 0.1 percent, a level that has never been achieved with large samples.

The new tool could increase the quality and accuracy of medical diagnosis and quicken the pace of pharmaceutical development.

“IonStar will totally change the face of clinical and pharmaceutical research and industry, where large investigations are often critical,” says Jun Qu, PhD, lead investigator and professor in the UB School of Pharmacy and Pharmaceutical Sciences.

The research was published in the Proceedings of the National Academy of Sciences (PNAS).

Playing Spot the Difference

The abundance of proteins in the body that correspond with disease or pharmaceutical reactions can provide researchers with vital clues for accurately diagnosing a condition, and for developing potential therapies and evaluating drug effects.

Protein analysis tools are used to quantify and compare the abundance of proteins in groups of healthy individuals with those who are ill or treated with a drug. Changes in protein abundances, when analyzed together, often reveal novel biomarkers.

Compared to OpenMS and industry standard MaxQuant, IonStar lowered the amount of missing data in test results from 17 percent to 0.1 percent. The white area indicates missing data. (Jun Qu)

The challenge for researchers is that current tools are not efficient at analyzing large numbers of samples. One type of method, the labeling-method, uses chemical tags to label proteins. The issue: The software can only analyze up to 10 samples at a time, making it difficult for researchers to conduct typical pharmaceutical and clinical studies, says Qu.

The alternative, the label-free method, can analyze a large number of samples at once at the expense of accuracy and precision, causing researchers to waste time and resources validating falsely identified biomarkers.

IonStar increases accuracy and precision and lowers missing data by improving on sample preparation methods, alignment and feature detection designs for mass spectrometry analysis.

“For example, in clinical trials, comparing a handful of patients gets you nowhere,” says Qu. “If you can analyze a large number of patients with high-quality data, you can discover and track biomarkers much more accurately and reliably. The same is true for pharmaceutical investigations.”

Proving the Concept in Traumatic Brain Injury

Researchers used IonStar to quantify proteins in rats with traumatic brain injury, a debilitating condition that accounts for 2.2 million emergency room visits annually in the United States.

Using 100 tissue samples, IonStar identified 7,000 proteins, including 1,000 that differed in abundance, without missing data.

IonStar also measured low-abundance proteins with higher accuracy and precision than other prevalent analysis tools. This capability is critical, says Qu, because proteins that appear in smaller amounts play a more influential role in the body.

“If higher-level proteins are soldiers, then lower-level proteins are the commanders. They are the regulators that tell the higher-level proteins what to do,” says Qu.

Qu has used IonStar and similar techniques to analyze protein variation in cancer, diabetes, cardiovascular disease, neurodegeneration and retina degeneration as well.

Future work on IonStar will focus on expanding the number of samples the tool can analyze.

(Source: The University at Buffalo)


Filed Under: Drug Discovery

 

Related Articles Read More >

Zoliflodacin wins FDA nod for treatment of gonorrhea
FDA approved ENFLONSIA for the prevention of RSV in Infants
First clinical study results of Dupixent for atopic dermatitis in patients with darker skin tones 
Labcorp widens precision oncology toolkit, aims to speed drug-trial enrollment
“ddd
EXPAND YOUR KNOWLEDGE AND STAY CONNECTED
Get the latest news and trends happening now in the drug discovery and development industry.

MEDTECH 100 INDEX

Medtech 100 logo
Market Summary > Current Price
The MedTech 100 is a financial index calculated using the BIG100 companies covered in Medical Design and Outsourcing.
Drug Discovery and Development
  • MassDevice
  • DeviceTalks
  • Medtech100 Index
  • Medical Design Sourcing
  • Medical Design & Outsourcing
  • Medical Tubing + Extrusion
  • Subscribe to our E-Newsletter
  • Contact Us
  • About Us
  • R&D World
  • Drug Delivery Business News
  • Pharmaceutical Processing World

Copyright © 2025 WTWH Media LLC. All Rights Reserved. The material on this site may not be reproduced, distributed, transmitted, cached or otherwise used, except with the prior written permission of WTWH Media
Privacy Policy | Advertising | About Us

Search Drug Discovery & Development

  • Home Drug Discovery and Development
  • Drug Discovery
  • Women in Pharma and Biotech
  • Oncology
  • Neurological Disease
  • Infectious Disease
  • Resources
    • Video features
    • Podcast
    • Voices
    • Webinars
  • Pharma 50
    • 2025 Pharma 50
    • 2024 Pharma 50
    • 2023 Pharma 50
    • 2022 Pharma 50
    • 2021 Pharma 50
  • Advertise
  • SUBSCRIBE