Drug Discovery and Development

  • Home Drug Discovery and Development
  • Drug Discovery
  • Women in Pharma and Biotech
  • Oncology
  • Neurological Disease
  • Infectious Disease
  • Resources
    • Video features
    • Podcast
    • Voices
    • Webinars
  • Pharma 50
    • 2025 Pharma 50
    • 2024 Pharma 50
    • 2023 Pharma 50
    • 2022 Pharma 50
    • 2021 Pharma 50
  • Advertise
  • SUBSCRIBE

Mass spectrometry makes the clinical grade

By Drug Discovery Trends Editor | September 4, 2012

MassSpecPNNL1-250

PNNL researchers developed a new technique using mass spectrometers, shown here, that matches the sensitivity and accuracy of antibody-based clinical tests to identify protein biomarkers associated with cancer and other diseases. The new technique, called PRISM, could speed drug discovery and basic biology research. Image: EMSL 

Combining
two well-established analytic techniques and adding a twist identifies
proteins from blood with as much accuracy and sensitivity as the
antibody-based tests used clinically, researchers report this week in
Proceedings of the National Academy of Sciences Early Edition online.
The technique should be able to speed up development of diagnostic tests
and treatments based on proteins specific to certain diseases.

The
team of scientists at the Department of Energy’s Pacific Northwest
National Laboratory found that their technique, called PRISM, performed
as accurately as standard clinical tests known as ELISAs in a
head-to-head comparison using blood samples from cancer patients. The
tests measure biomarkers, proteins whose presence identifies a disease
or condition.

“Clinical
tests have almost always used antibodies to measure biomarkers, because
antibodies can provide good sensitivity,” said PNNL bioanalytical
chemist Wei-Jun Qian, lead author on the study. “But it often takes a
year and a half to develop antibodies as tools. Antibody development is
one of the bottlenecks for new biomarker studies in disease and systems
biology research.”

Qian,
Tujin Shi, Tom Fillmore and their PNNL colleagues worked out the highly
sensitive PRISM using resources at DOE’s EMSL, the Environmental
Molecular Sciences Laboratory on PNNL’s campus. The result is a simple
and elegant integration of existing technologies that solves a
long-standing problem.

The competition

Researchers
have long wanted to use mass spectrometry to identify proteins of
interest within biological samples. Proteins are easy to detect with
mass spec, but it lacks the sensitivity to detect rare proteins that
exist in very low concentrations. Scientists use antibodies to detect
those rare proteins, which work like a magnet pulling a nail out of a
haystack.

Antibodies
are immune system molecules that recognize proteins from foreign
invaders and grab onto them, which allows researchers to pull their
proteins of interest out of a larger volume, concentrating the proteins
in the process. Because antibodies recognize only one or a couple of
proteins, researchers have made treatments and tools out of them. Drugs
whose generic names end in “-mab” are antibodies, for example.

For
research purposes, the modern laboratory can produce antibodies for
almost any protein. But that development process is expensive and
time-consuming. If you have a new biomarker to explore, it can take
longer than a year just to create an antibody tool to do so.

To
get around the need for an antibody, Qian and the team concentrated the
proteins in their samples another way. They used a common technique
called high performance liquid chromatography, usually shortened to
HPLC, to make the proteins about 100 times as concentrated as their
initial sample. While an excellent step, they also had to find their
protein of interest in their concentrated samples.

So they sent in a spy, a protein they could detect and whose presence would tell them if they found what they were looking for.

With
a potential biomarker in mind, the team made a version that was
atomically “heavier.” They synthesized the protein using carbon and
nitrogen atoms that contain extra neutrons. The unusual atoms added
weight but didn’t change any other characteristics. The heavier versions
are twins of the lighter proteins found within the blood, cells, or
samples. Although the twins behave similarly in the analytical
instruments, the heavier twin is easily found among the sample’s many
proteins.

/sites/rdmag.com/files/legacyimages/RD/News/2012/09/MassSpecPNNL2.jpg

click to enlarge

PNNL scientists developed a mass spectrometry-based technique called PRISM, illustrated here, to identify protein biomarkers associated with cancer and other diseases. The technique should be able to speed up development of protein-specific diagnostic tests and treatment. Image: Wei-Jun Qian 

After
adding the heavy version to the samples, the team sent the sample
through the instrument to concentrate the proteins. The instrument spit
out the sample, one concentrated fraction at a time. The fraction that
contained the heavy biomarker was also the fraction that contained its
twin, the lighter, natural protein. From this fraction, the team could
quantify the protein.

Protein spectrum

To
prove they could use PRISM this way to find very rare proteins, the
team spiked blood samples from women with a biomarker called prostate
specific antigen, or PSA, that only men make. The team found they could
measure PSA at concentrations about 50 picograms per milliliter. While
typical of the sensitivity of ELISA tests, it represents about 100 times
the sensitivity of conventional mass spectrometry methods.

“This is a breakthrough in sensitivity without using antibodies,” said Qian.

Then
they tested PSA in samples from male cancer patients and found PRISM
performed as well as ELISA. Interestingly, PRISM measured three times
the amount of PSA than the ELISA assay did. This result suggests that
antibody-based ELISA tests fail to measure all of the forms of the
biomarker. This is likely due to the fact that antibodies don’t
recognize all the different forms that proteins can take, Qian said,
whereas PRISM measures the total amount of protein.

In
addition to its sensitivity, PRISM requires only a very small sample of
blood or serum from the patient. The team used only 2 microliters of
the cancer patients’ sample, a volume that would easily fit inside this
small printed “o”.

One
drawback to the technique, however, is how many biological samples can
be tested at once. Researchers want to test thousands, and
antibody-based methods allow such high-throughput testing. But PRISM can
only test several hundred samples per study. However, with the time
researchers save not developing antibodies, the technique might still
put them ahead in biomarker development.

For
basic biology research, Qian said the method will be useful for
studying biological pathways in cases where scientists need to
accurately quantify multiple different proteins.

This
work was supported by the National Institutes of Health New Innovator
Award and a Department of Energy Early Career Research Award to Wei-Jun
Qian.

An antibody-free, targeted mass spectrometry approach for quantification of proteins at low pg/mL levels in human plasma/serum

Source: Pacific Northwest National Laboratory


Filed Under: Drug Discovery

 

Related Articles Read More >

Zoliflodacin wins FDA nod for treatment of gonorrhea
FDA approved ENFLONSIA for the prevention of RSV in Infants
First clinical study results of Dupixent for atopic dermatitis in patients with darker skin tones 
Labcorp widens precision oncology toolkit, aims to speed drug-trial enrollment
“ddd
EXPAND YOUR KNOWLEDGE AND STAY CONNECTED
Get the latest news and trends happening now in the drug discovery and development industry.

MEDTECH 100 INDEX

Medtech 100 logo
Market Summary > Current Price
The MedTech 100 is a financial index calculated using the BIG100 companies covered in Medical Design and Outsourcing.
Drug Discovery and Development
  • MassDevice
  • DeviceTalks
  • Medtech100 Index
  • Medical Design Sourcing
  • Medical Design & Outsourcing
  • Medical Tubing + Extrusion
  • Subscribe to our E-Newsletter
  • Contact Us
  • About Us
  • R&D World
  • Drug Delivery Business News
  • Pharmaceutical Processing World

Copyright © 2025 WTWH Media LLC. All Rights Reserved. The material on this site may not be reproduced, distributed, transmitted, cached or otherwise used, except with the prior written permission of WTWH Media
Privacy Policy | Advertising | About Us

Search Drug Discovery & Development

  • Home Drug Discovery and Development
  • Drug Discovery
  • Women in Pharma and Biotech
  • Oncology
  • Neurological Disease
  • Infectious Disease
  • Resources
    • Video features
    • Podcast
    • Voices
    • Webinars
  • Pharma 50
    • 2025 Pharma 50
    • 2024 Pharma 50
    • 2023 Pharma 50
    • 2022 Pharma 50
    • 2021 Pharma 50
  • Advertise
  • SUBSCRIBE