Drug Discovery and Development

  • Home Drug Discovery and Development
  • Drug Discovery
  • Genomics/Proteomics
  • Oncology
  • Neurological Disease
  • Infectious Disease
  • R&D 100 Awards
  • Pharma 50
    • 2022 Pharma 50
    • 2021 Pharma 50

Designed Drug Candidate Significantly Reduces HIV Reactivation Rate

By Drug Discovery Trends Editor | July 9, 2015

HIV-infected patients remain on antiretroviral therapy for life because the virus survives over the long-term in infected dormant cells. Interruption of current types of antiretroviral therapy results in a rebound of the virus and clinical progression to AIDS.
 
But now, scientists from the Florida campus of The Scripps Research Institute (TSRI) have shown that, unlike other antiretroviral therapies, a natural compound called Cortistatin A reduces residual levels of virus from these infected dormant cells, establishing a near-permanent state of latency and greatly diminishing the virus’ capacity for reactivation.
 
“Our results highlight an alternative approach to current anti-HIV strategies,” said Susana Valente, a TSRI associate professor who led the study. “Prior treatment with Cortistatin A significantly inhibits and delays viral rebound in the absence of any drug. Our results suggest current antiretroviral regimens could be supplemented with a Tat inhibitor such as Cortistatin A to achieve a functional HIV-1 cure, reducing levels of the virus and preventing reactivation from latent reservoirs.”
 
The study was published this week in the journal mBio.
 
Cortistatin A was isolated from a marine sponge, Corticium simplex, in 2006, and in 2008, TSRI chemist Phil Baran won the global race to synthesize the compound. A configuration of the compound, didehydro-Cortistatin A, was shown in earlier studies to target the protein Tat, which exponentially increases viral production.
 
The new study shows that didehydro-Cortistatin A inhibits replication in HIV-infected cells by significantly reducing levels of viral messenger RNA – the blueprints for producing proteins and more infection.
 
“In latently infected primary T cells isolated from nine HIV-infected subjects being treated with antiretroviral drugs, didehydro-Cortistatin A reduced viral reactivation by an average of 92.3 percent,” said Guillaume Mousseau, the first author of the study and a member of the Valente lab.
 
The results suggest an alternative to a widely studied strategy for latent HIV eradication known as “kick and kill,” which tries to purge viral reservoirs by “kicking” them out of their latency with reversing agents and stopping new rounds of infection with an immunotherapy agent to boost the body’s own immune system response while on antiretroviral treatment.
 
“In our proposed model, didehydro-Cortistatin A inhibits the viral transcriptional activator, Tat, far more completely, delaying or even halting viral replication, reactivation and replenishment of the latent viral reservoir,” said Valente.
 
Source: Scripps Research Institute

Filed Under: Drug Discovery

 

Related Articles Read More >

Roche in Drug Discovery & Development Pharma 50
Roche’s bispecific antibody Lunsumio wins priority review from FDA for non-Hodgkin lymphoma
Tiffany Hurd
CB Therapeutics biz dev lead sees upside for psychedelics in mental health and beyond
Pharmacovigilance
A new era of pharmacovigilance: Worldwide master key for drug safety monitoring
Takeda Pharmaceutical in the Drug Discovery & Development Pharma 50
Takeda’s Takhzyro fares well in pediatric hereditary angioedema study

MEDTECH 100 INDEX

Medtech 100 logo
Market Summary > Current Price
The MedTech 100 is a financial index calculated using the BIG100 companies covered in Medical Design and Outsourcing.

Need Drug Discovery news in a minute?

We Deliver!
Drug Discovery & Development Enewsletters get you caught up on all the mission critical news you need. Sign up today.
Enews Signup
Drug Discovery and Development
  • MASSDEVICE
  • DEVICETALKS
  • Medical Design & Outsourcing
  • MEDICAL TUBING + EXTRUSION
  • MEDTECH 100
  • Medical Design Sourcing
  • Subscribe to our Free E-Newsletter
  • Contact Us
  • About Us
  • Advertise With Us
  • R&D World
  • Drug Delivery Business News
  • Pharmaceutical Processing World

Copyright © 2022 WTWH Media LLC. All Rights Reserved. The material on this site may not be reproduced, distributed, transmitted, cached or otherwise used, except with the prior written permission of WTWH Media
Privacy Policy | Advertising | About Us

Search Drug Discovery & Development

  • Home Drug Discovery and Development
  • Drug Discovery
  • Genomics/Proteomics
  • Oncology
  • Neurological Disease
  • Infectious Disease
  • R&D 100 Awards
  • Pharma 50
    • 2022 Pharma 50
    • 2021 Pharma 50