Drug Discovery and Development

  • Home Drug Discovery and Development
  • Drug Discovery
  • Women in Pharma and Biotech
  • Oncology
  • Neurological Disease
  • Infectious Disease
  • Resources
    • Video features
    • Podcast
    • Voices
    • Views
    • Webinars
  • Pharma 50
    • 2025 Pharma 50
    • 2024 Pharma 50
    • 2023 Pharma 50
    • 2022 Pharma 50
    • 2021 Pharma 50
  • Advertise
  • SUBSCRIBE

Collaboration to Develop Biomimetic 3D CNS Models

By Drug Discovery Trends Editor | May 11, 2012

TAP Biosystems announced a three-year collaboration with scientists at The Open University (OU), in Milton Keynes, U.K. to produce robust 3D human central nervous system (CNS) tissue models for use in drug discovery and preclinical testing.


The collaboration will focus on developing technology to generate and manufacture advanced 3D CNS tissue models. Using TAP’s RAFT technology, glial cells and neurons will be made into gel-based tissues. Cells are seeded in collagen gel in a rectangular mould and tethered at each end. The cells contract the collagen and become highly aligned, mimicking the cellular arrangement of living CNS tissue. These tissue models could be used to monitor the responses of glial cells and neurons to simulated damage, and could have applications as a tool for pre-clinical screening of novel therapies for neurological damage and disorders such as Alzheimer’s disease.


“Astrocytes are CNS glial cells that normally support neuronal activity, but they change behaviour following damage and can inhibit regeneration. 2D cell cultures of astrocytes and neurons don’t behave in the same way as they do in a living organism and this can limit their range of uses,” says
James Phillips, lecturer in Health Sciences in the Faculty of Science at The Open University. “We are using the RAFT process with astrocyte-seeded collagen gels. The cellular alignment created then allows the other types of cells in our 3D tissue model to organise themselves as they would in a natural environment. This means we can simulate the interaction between glial cells and regenerating neurons after CNS injury and monitor both cell types continuously. We can also carefully control variables, allowing us to test specific hypotheses, and we can look at the way each cell type responds, for example to specific drugs, in a very tightly controlled way without the additional complexity present in an animal model.”


“We hope this collaboration will enable us to develop highly reproducible CNS tissue models, and make them available to academic groups and pharma companies for research and drug screening,” Phillips concluded.


Release date: May 10, 2012
Source: TAP Biosystems


 


Filed Under: Drug Discovery

 

Related Articles Read More >

Sai Life Sciences exec: GLP-1 boom has ‘exploded the peptide field’ as firm opens new center
Novartis in the Pharma 50
Swissmedic approves first malaria treatment for infants
Korean team reports all-in-one cancer nanomedicine in pre-clinical studies
Nektar’s Phase 2b atopic dermatitis win triggers 1,746% analyst target surge, but legal tussle with ex-partner Lilly could complicate path forward
“ddd
EXPAND YOUR KNOWLEDGE AND STAY CONNECTED
Get the latest news and trends happening now in the drug discovery and development industry.

MEDTECH 100 INDEX

Medtech 100 logo
Market Summary > Current Price
The MedTech 100 is a financial index calculated using the BIG100 companies covered in Medical Design and Outsourcing.
Drug Discovery and Development
  • MassDevice
  • DeviceTalks
  • Medtech100 Index
  • Medical Design Sourcing
  • Medical Design & Outsourcing
  • Medical Tubing + Extrusion
  • Subscribe to our E-Newsletter
  • Contact Us
  • About Us
  • R&D World
  • Drug Delivery Business News
  • Pharmaceutical Processing World

Copyright © 2025 WTWH Media LLC. All Rights Reserved. The material on this site may not be reproduced, distributed, transmitted, cached or otherwise used, except with the prior written permission of WTWH Media
Privacy Policy | Advertising | About Us

Search Drug Discovery & Development

  • Home Drug Discovery and Development
  • Drug Discovery
  • Women in Pharma and Biotech
  • Oncology
  • Neurological Disease
  • Infectious Disease
  • Resources
    • Video features
    • Podcast
    • Voices
    • Views
    • Webinars
  • Pharma 50
    • 2025 Pharma 50
    • 2024 Pharma 50
    • 2023 Pharma 50
    • 2022 Pharma 50
    • 2021 Pharma 50
  • Advertise
  • SUBSCRIBE