Drug Discovery and Development

  • Home Drug Discovery and Development
  • Drug Discovery
  • Women in Pharma and Biotech
  • Oncology
  • Neurological Disease
  • Infectious Disease
  • Resources
    • Video features
    • Podcast
    • Voices
    • Webinars
  • Pharma 50
    • 2025 Pharma 50
    • 2024 Pharma 50
    • 2023 Pharma 50
    • 2022 Pharma 50
    • 2021 Pharma 50
  • Advertise
  • SUBSCRIBE

What’s in This Plant? The Best Automated System for Finding Potential Drugs

By RIKEN | April 1, 2019

The new method for computational mass spectrometry will speed up the discovery of natural products that could be used in medicines.

Researchers at the RIKEN Center for Sustainable Resource Science (CSRS) in Japan have developed a new computational mass-spectrometry system for identifying metabolomes—entire sets of metabolites for different living organisms. When the new method was tested on select tissues from 12 plants species, it was able to note over a thousand metabolites. Among them were dozens that had never been found before, including those with antibiotic and anti-cancer potential.

The common pain reliever aspirin (acetylsalicylic acid) was first made in the 19th century, and is famously derived from willow bark extract, a medicine that was described in clay tablets thousands of years ago. After a new method of synthesis was discovered, and after it had been used around the world for almost 70 years, scientists were finally able to understand how it works. This was a long historical process, and while plants remain an almost infinite resource for drug discovery and biotechnology, thousands of years is no longer an acceptable time frame.

Why Does It Take So Long?
The biggest problem is that there are millions of plant species and each has its own metabolome–the set of all products of the plant’s metabolism. Currently, we only know about five percent of all these natural products. Although mass spectrometry can identify plant metabolites, it only works for determining if a sample contains a given molecule. Searching for as-yet-unknown metabolites is another story.

Computational mass spectrometry is a growing research field that focuses on finding previously unknown metabolites and predicting their functions. The field has established metabolome databases and repositories, which facilitate global identification of human, plant, and microbiota metabolomes. Led by Hiroshi Tsugawa and Kazuki Saito, a team at CSRS has spent several years developing a system that can quickly identify large numbers of plant metabolites, including those that have not been identified before.

As Tsugawa explains, “while no software can comprehensively identify all the metabolites in a living organism, our program incorporates new techniques in computational mass spectrometry and provides 10 times the coverage of previous methods.”

In tests, while mass spectrometry-based methods only noted about one hundred metabolites, the team’s new system was able to find more than one thousand.

The new computational technique relies on several new algorithms that compare the mass spectrometry outputs from plants that are labeled with carbon-13 with those that are not. The algorithms can predict the molecular formula of the metabolites and classify them by type. They can also predict the substructure of unknown metabolites, and based on similarities in structure, link them to known metabolites, which can help predict their functions.

Being able to find unknown metabolites is a key selling point for the new software. In particular, the system was able to characterize a class of antibiotics (benzoxazinoids) in rice and maize as well as a class with anti-inflammatory and antibacterial properties (glycoalkaloids) in the common onion, tomato, and potato. It was also able to identify two classes of anti-cancer metabolites, one (triterpene saponins) in soy beans and licorice, and the other (beta-carboline alkaloid) in a plant from the coffee family.

In addition to facilitating the screening of plant-specialized metabolomes, the new process will speed up the discovery of natural products that could be used in medicines, and also increase understanding of plant physiology in general.

As Tsugawa notes, use of this new method is not limited to plants. “I believe that computationally decoding metabolomic mass spectrometry data is linked to a deeper understanding of all metabolisms. Our next goal is to improve this methodology to facilitate global identification of human and microbiota metabolomes as well. Newly found metabolites can then be further investigated via genomics, transcriptomics, and proteomics.”


Filed Under: Drug Discovery

 

Related Articles Read More >

Sanders, King target DTC pharma ads but the industry worries more about threats to its $2B R&D model
Zoliflodacin wins FDA nod for treatment of gonorrhea
FDA approved ENFLONSIA for the prevention of RSV in Infants
First clinical study results of Dupixent for atopic dermatitis in patients with darker skin tones 
“ddd
EXPAND YOUR KNOWLEDGE AND STAY CONNECTED
Get the latest news and trends happening now in the drug discovery and development industry.

MEDTECH 100 INDEX

Medtech 100 logo
Market Summary > Current Price
The MedTech 100 is a financial index calculated using the BIG100 companies covered in Medical Design and Outsourcing.
Drug Discovery and Development
  • MassDevice
  • DeviceTalks
  • Medtech100 Index
  • Medical Design Sourcing
  • Medical Design & Outsourcing
  • Medical Tubing + Extrusion
  • Subscribe to our E-Newsletter
  • Contact Us
  • About Us
  • R&D World
  • Drug Delivery Business News
  • Pharmaceutical Processing World

Copyright © 2025 WTWH Media LLC. All Rights Reserved. The material on this site may not be reproduced, distributed, transmitted, cached or otherwise used, except with the prior written permission of WTWH Media
Privacy Policy | Advertising | About Us

Search Drug Discovery & Development

  • Home Drug Discovery and Development
  • Drug Discovery
  • Women in Pharma and Biotech
  • Oncology
  • Neurological Disease
  • Infectious Disease
  • Resources
    • Video features
    • Podcast
    • Voices
    • Webinars
  • Pharma 50
    • 2025 Pharma 50
    • 2024 Pharma 50
    • 2023 Pharma 50
    • 2022 Pharma 50
    • 2021 Pharma 50
  • Advertise
  • SUBSCRIBE