Drug Discovery and Development

  • Home Drug Discovery and Development
  • Drug Discovery
  • Women in Pharma
  • Oncology
  • Neurological Disease
  • Infectious Disease
  • R&D 100 Awards
  • Pharma 50
    • 2022 Pharma 50
    • 2021 Pharma 50

Vitamin D Discovery Could Prove Key to New Treatments

By Kyoto University | February 3, 2017

A team led by Motonari Uesugi, professor and deputy director of Kyoto University’s Institute for Integrated Cell-Material Sciences (iCeMS), found that a vitamin D metabolite known as ’25-OHD’ inhibits proteins that regulate lipid production. Those proteins, called sterol regulatory element-binding proteins (SREBPs), cannot then stimulate expression of lipid-producing genes.

“To our knowledge, this is the first demonstration that 25-OHD inhibits SREBPs,” the researchers concluded in their study recently published in Cell Chemical Biology.

Drug companies could develop synthetic analogs of 25-OHD to potentially help regulate lipid production in individuals who lack vitamin D to do this for them.

Vitamin D deficiency is caused by insufficient dietary intake or sunlight exposure, and it is increasing worldwide. It is associated with several bone diseases such as rickets in children and osteoporosis in adults. It is also linked with metabolic disorders and certain types of cancers. But it has been unclear how the lack of vitamin D contributes to metabolic disorders and cancers.

The research team came across 25-OHD while screening an extensive chemical library of endogenous molecules. They were looking for inhibitors of SREBPs, which regulate lipid production, and honed in on 25-hydroxyvitamin D (25-OHD), which is a hydroxylated vitamin D metabolite.

The relationship between 25-OHD and lipid levels has been known for more than 20 years. However, 25-OHD has generally been considered biologically inactive.

The researchers found 25-OHD induces the breakdown of SREBP cleavage-activating protein (SCAP), an escort protein required for SREBP activation. They were able to document how 25-OHD degrades SCAP into smaller amino acids.

SREBP and SCAP proteins are increasingly recognized as potential drug targets for cancers and metabolic disorders. Understanding the role 25-OHD plays in the SREBP-SCAP interaction and in lipid regulation could open up new treatment opportunities.


Filed Under: Drug Discovery

 

Related Articles Read More >

EpicentRx
A next-gen vaccine that could help end COVID-19 whack-a-moleĀ 
Dotmatics
How Dotmatics aims to help reduce the drug discovery failure rate
Diversity
Making diversity in clinical research more than a talking point
psychedelic medicine discussed at SXSW
5 headwinds and 5 tailwinds for psychedelic medicine

Need Drug Discovery news in a minute?

We Deliver!
Drug Discovery & Development Enewsletters get you caught up on all the mission critical news you need. Sign up today.
Enews Signup
Drug Discovery and Development
  • MassDevice
  • DeviceTalks
  • Medical Design & Outsourcing
  • Medical Tubing + Extrusion
  • Medtech100 Index
  • Medical Design Sourcing
  • Subscribe to our Free E-Newsletter
  • Contact Us
  • About Us
  • Advertise With Us
  • R&D World
  • Drug Delivery Business News
  • Pharmaceutical Processing World

Copyright © 2022 WTWH Media LLC. All Rights Reserved. The material on this site may not be reproduced, distributed, transmitted, cached or otherwise used, except with the prior written permission of WTWH Media
Privacy Policy | Advertising | About Us

Search Drug Discovery & Development

  • Home Drug Discovery and Development
  • Drug Discovery
  • Women in Pharma
  • Oncology
  • Neurological Disease
  • Infectious Disease
  • R&D 100 Awards
  • Pharma 50
    • 2022 Pharma 50
    • 2021 Pharma 50