Drug Discovery and Development

  • Home Drug Discovery and Development
  • Drug Discovery
  • Women in Pharma and Biotech
  • Oncology
  • Neurological Disease
  • Infectious Disease
  • Resources
    • Video features
    • Podcast
    • Webinars
  • Pharma 50
    • 2025 Pharma 50
    • 2024 Pharma 50
    • 2023 Pharma 50
    • 2022 Pharma 50
    • 2021 Pharma 50
  • Advertise
  • SUBSCRIBE

Topical Microbicide Offers Protection Against Genital Herpes

By Drug Discovery Trends Editor | January 21, 2009

A topical microbicide that silences two genes can safely protect against genital herpes infection for as long as one week, according to a joint study by researchers at the Albert Einstein College of Medicine of Yeshiva University and Harvard Medical School.

The study, carried out in mice, represents a major step toward developing a vaginal microbicide that offers women protection against herpes infection. Such a microbicide might also help in controlling the AIDS epidemic, since the blisters caused by genital herpes make people more susceptible to HIV infection. The study’s principal investigators were Deborah Palliser, Ph.D., assistant professor of microbiology & immunology at Einstein and Judy Lieberman, M.D., Ph.D., professor of pediatrics, Harvard Medical School.

The microbicide in this study is based on RNA interference (RNAi), a mechanism cells use to protect their genetic machinery from viruses and other threats. RNAi employs short, double-stranded RNAs called small interfering RNAs, or siRNAs. In 2001, scientists discovered that synthetic siRNAs can induce RNA interference in mammalian cells — a finding that has triggered interest in harnessing this strategy for biomedical research and drug development.

The HSV-2 microbicide used in this study inactivates two genes via RNA interference. One siRNA targets a viral gene, thereby silencing virus immediately following application, but suppression lasts for only a couple of days. The second siRNA — specific for a cell-surface protein used by HSV-2 to dock onto cells it infects — takes a few days to silence the gene, but then confers suppression for a week.

By combining the fast-acting-but-short-lived RNAi with the slower-acting-but-long-lived RNAi, the researchers created a vaginal microbicide offering protection that was both immediate (even warding off an HSV-2 “challenge” given shortly before the microbicide was applied) and sustained (protecting against HSV-2 challenge for a week after application).

‘A good microbicide for a sexually transmitted disease must offer long-term protection — compliance will be problematic if it has to be applied immediately before sexual intercourse,’ says Dr. Palliser. ‘Our microbicide, with its two siRNAs, provided sustained and uninterrupted protection against HSV-2 infection. And equally important, we achieved these results without causing inflammation of vaginal tissue — a side effect observed with other siRNAs that also risks neutralizing a microbicide’s benefits. We’re hopeful that this experimental microbicide can be turned into a cost-effective therapy for use in developing countries where up to 80 percent of the population is infected with HSV-2.’ The researchers are currently working to refine the microbicide and as yet have no plans for clinical trials.

Release Date: January 21, 2009
Source: Albert Einstein College of Medicine


Filed Under: Genomics/Proteomics

 

Related Articles Read More >

Spatial biology: Transforming our understanding of cellular environments
DNA double helix transforming into bar graphs, blue and gold, crisp focus on each strand, scientific finance theme --ar 5:4 --personalize 3kebfev --v 6.1 Job ID: f40101e1-2e2f-4f40-8d57-2144add82b53
Biotech in 2025: Precision medicine, smarter investments, and more emphasis on RWD in clinical trials
DNA helix 3D illustration. Mutations under microscope. Decoding genome. Virtual modeling of chemical processes. Hi-tech in medicine
Genomics in 2025: How $500 whole genome sequencing could democratize genomic data
A media release and Scientific Report image of Elizabeth Kellogg. - Camera Settings: ILCE-9M2, 12mm, ISO 1000, 1/80, f/3.2, Fri, 04-19-2024 at 10:10. v.12.01.23
St. Jude pioneers gene editing and structural biology to advance pediatric research
“ddd
EXPAND YOUR KNOWLEDGE AND STAY CONNECTED
Get the latest news and trends happening now in the drug discovery and development industry.

MEDTECH 100 INDEX

Medtech 100 logo
Market Summary > Current Price
The MedTech 100 is a financial index calculated using the BIG100 companies covered in Medical Design and Outsourcing.
Drug Discovery and Development
  • MassDevice
  • DeviceTalks
  • Medtech100 Index
  • Medical Design Sourcing
  • Medical Design & Outsourcing
  • Medical Tubing + Extrusion
  • Subscribe to our E-Newsletter
  • Contact Us
  • About Us
  • R&D World
  • Drug Delivery Business News
  • Pharmaceutical Processing World

Copyright © 2025 WTWH Media LLC. All Rights Reserved. The material on this site may not be reproduced, distributed, transmitted, cached or otherwise used, except with the prior written permission of WTWH Media
Privacy Policy | Advertising | About Us

Search Drug Discovery & Development

  • Home Drug Discovery and Development
  • Drug Discovery
  • Women in Pharma and Biotech
  • Oncology
  • Neurological Disease
  • Infectious Disease
  • Resources
    • Video features
    • Podcast
    • Webinars
  • Pharma 50
    • 2025 Pharma 50
    • 2024 Pharma 50
    • 2023 Pharma 50
    • 2022 Pharma 50
    • 2021 Pharma 50
  • Advertise
  • SUBSCRIBE