Drug Discovery and Development

  • Home Drug Discovery and Development
  • Drug Discovery
  • Women in Pharma and Biotech
  • Oncology
  • Neurological Disease
  • Infectious Disease
  • Resources
    • Video features
    • Podcast
    • Webinars
  • Pharma 50
    • 2025 Pharma 50
    • 2024 Pharma 50
    • 2023 Pharma 50
    • 2022 Pharma 50
    • 2021 Pharma 50
  • Advertise
  • SUBSCRIBE

Skin Cancer can Spread in Mice by Hijacking the Immune System

By Cancer Research UK | January 31, 2019

Scientists have uncovered molecules released by invasive skin cancer that reprogram healthy immune cells to help the cancer to spread.

Targeting these molecules with inhibiting drugs could help to prevent this aggressive skin cancer coming back after treatment.

The findings of the Cancer Research UK-funded study are published in Cell, today.

Researchers from Queen Mary University of London looked at cells from the edges of invasive melanomas in mice and human tumour samples, to investigate the effects of a protein they produce—called Myosin II.

They found that high levels of Myosin II in these cells not only makes them more mobile, but also triggers the release of chemicals that reprogram the immune system.

These chemicals affect the surrounding healthy immune cells, called macrophages, and hijack their natural cancer-killing abilities. This means that instead of attacking the cancer cells, they end up helping them to survive.

Some of these chemicals also make tiny holes in the blood vessels, allowing cancer cells to escape into the bloodstream and to new areas of the body.

Professor Vicky Sanz-Moreno, Cancer Research UK-funded lead author from Barts Cancer Institute, Queen Mary University of London, said: “This study highlights how cancer cells interact with and influence their surrounding environment to grow and spread. Developing treatments that target the chemicals that alter the immune system could help to prevent the spread of the disease.”

Researchers also found that one of the chemicals released by Myosin II-rich cells, called interleukin 1A, was key for making cancer cells more invasive. By blocking Myosin II activity with different drugs, they reduced the amount of interleukin 1A produced by melanoma cells in mice and human tumour samples.

Professor Sanz-Moreno explains: “By using therapeutic drugs that block either Myosin II activity or the release of interleukin 1A, we can make the tumour less invasive and slow its growth, making it easier to treat.”

Drugs that block Myosin II activity are already being used to treat diseases such as glaucoma, a progressive disease of the eye. Researchers are planning further lab studies to investigate whether drugs that block Myosin II could be combined with existing melanoma treatments.

Sanz-Moreno adds “We are excited to find out whether inhibitor drugs could be used in combination with other targeted therapies. By identifying effective treatment combinations, we hope that in the future Myosin II and interleukin 1A inhibitors could be used to improve patient outcomes and reduce the risk of melanoma coming back.”

Professor Richard Marais, director of the Cancer Research UK Manchester Institute and melanoma expert, said: “These exciting findings show how the basic research that Cancer Research UK funds is helping us to understand cancer biology and develop effective treatments for cancer patients.”

“When melanoma is removed, there’s always a chance that some cells could remain. What this study shows is that we may be able to develop treatments to stop those remaining cells from spreading after surgery, helping patients to survive for longer.”


Filed Under: Oncology

 

Related Articles Read More >

AP Biosciences charts course for safer CD137 bispecifics with its T-cube platform
Cellares and UW-Madison partner to automate manufacturing for novel solid tumor CAR-T
Why smaller, simpler molecular glues are gaining attention in drug discovery
Technology background. Big data concept. Binary computer code. Vector illustration.
COTA Healthcare announces AI milestone in real-world oncology data
“ddd
EXPAND YOUR KNOWLEDGE AND STAY CONNECTED
Get the latest news and trends happening now in the drug discovery and development industry.

MEDTECH 100 INDEX

Medtech 100 logo
Market Summary > Current Price
The MedTech 100 is a financial index calculated using the BIG100 companies covered in Medical Design and Outsourcing.
Drug Discovery and Development
  • MassDevice
  • DeviceTalks
  • Medtech100 Index
  • Medical Design Sourcing
  • Medical Design & Outsourcing
  • Medical Tubing + Extrusion
  • Subscribe to our E-Newsletter
  • Contact Us
  • About Us
  • R&D World
  • Drug Delivery Business News
  • Pharmaceutical Processing World

Copyright © 2025 WTWH Media LLC. All Rights Reserved. The material on this site may not be reproduced, distributed, transmitted, cached or otherwise used, except with the prior written permission of WTWH Media
Privacy Policy | Advertising | About Us

Search Drug Discovery & Development

  • Home Drug Discovery and Development
  • Drug Discovery
  • Women in Pharma and Biotech
  • Oncology
  • Neurological Disease
  • Infectious Disease
  • Resources
    • Video features
    • Podcast
    • Webinars
  • Pharma 50
    • 2025 Pharma 50
    • 2024 Pharma 50
    • 2023 Pharma 50
    • 2022 Pharma 50
    • 2021 Pharma 50
  • Advertise
  • SUBSCRIBE