Drug Discovery and Development

  • Home Drug Discovery and Development
  • Drug Discovery
  • Women in Pharma and Biotech
  • Oncology
  • Neurological Disease
  • Infectious Disease
  • Resources
    • Video features
    • Podcast
    • Webinars
  • Pharma 50
    • 2025 Pharma 50
    • 2024 Pharma 50
    • 2023 Pharma 50
    • 2022 Pharma 50
    • 2021 Pharma 50
  • Advertise
  • SUBSCRIBE

Scientists Uncover Major Factor in Development of Huntington’s

By Drug Discovery Trends Editor | October 29, 2014

Scientists from the Florida campus of The Scripps Research Institute have uncovered a major contributor to Huntington’s disease, a devastating progressive neurological condition that produces involuntary movements, emotional disturbance and cognitive impairment.

Using an animal model of Huntington’s disease, the new study shows that signaling by a specific protein can trigger onset of the disease and lead to exacerbation of symptoms. These findings, published in the journal Science Signaling, offer a novel target for drug development.

It has been more than 20 years since scientists discovered that mutations in the gene huntingtin cause Huntington’s disease; the product of the gene, Huntingtin protein, is widely expressed is almost all of the cells in the body.

The disease results in an early loss of neurons in the striatum, part of the forebrain that is responsible for coordinating thought with movement—when you want to move your arm, the striatum lets your muscles know. Unfortunately, the precise physiological role for huntingtin in disease onset and progression remains unclear.

The new study, however, shows for the first time a functional connection between huntingtin and mTOR, a developmentally important gene that integrates signals from multiple pathways, such as growth factors and hormones, to regulate a variety of critical cell functions. Specifically, the scientists found that the huntingtin protein activates signaling by a protein complex known as mTORC1 (mechanistic-target of rapamycin kinase (mTOR) complex 1). Depleting huntingtin reduces mTORC1 activity; an overexpression of huntingtin increases it.

“In our previous work, we showed that there is a protein in the striatum that interacts with huntingtin and makes it more toxic—this protein can activate mTORC1,” said Srinivasa Subramaniam, a TSRI biologist who led the study. “What we didn’t know was how TORC1 and huntingtin were related. What we found for the first time in this new study is that huntingtin can activate mTORC1 and increase its activity in the striatum of mice—thus prematurely initiating the disease.”

In the new research, Subramaniam and his colleagues selectively deleted a gene that inhibits mTORC1 activity in the animal model striatum, which caused a relatively rapid increase in the severity of behavioral abnormalities related to Huntington’s disease, as well as premature death.

“This indicates for the first time that huntingtin is a novel regulator of mTORC1 activity that contributes to the pathogenesis of the disease, at least in animal models,” he said.

The researchers will continue to investigate the role of mTORC1 in Huntington’s and other age-dependent neurodegenerative diseases.

“We think that huntingtin may regulate mTORC1 both in the brain and in other tissue,” said William Pryor, the first author of the study and a member of Subramaniam’s laboratory. “Our suspicion is that this exacerbation of mTORC1 might compromise autophagy—the pathway that recycles proteins and organelles—which has been implicated in neurodegeneration.”

“Reducing mTORC1 activation either through drugs or low-protein foods may have a positive influence on preventing the disease process,” said Subramaniam.

Date: October 29, 2014

Source: Scripps Research Institute


Filed Under: Drug Discovery

 

Related Articles Read More >

Lokavant’s Spectrum v15 uses AI to cut trial-feasibility modeling from weeks to minutes
Prime time for peptide-based drug discovery 
Why smaller, simpler molecular glues are gaining attention in drug discovery
Glass vial, pipette and woman scientist in laboratory for medical study, research or experiment. Test tube, dropper and professional female person with chemical liquid for pharmaceutical innovation
Unlocking ‘bench-to-bedside’ discoveries requires better data sharing and collaboration
“ddd
EXPAND YOUR KNOWLEDGE AND STAY CONNECTED
Get the latest news and trends happening now in the drug discovery and development industry.

MEDTECH 100 INDEX

Medtech 100 logo
Market Summary > Current Price
The MedTech 100 is a financial index calculated using the BIG100 companies covered in Medical Design and Outsourcing.
Drug Discovery and Development
  • MassDevice
  • DeviceTalks
  • Medtech100 Index
  • Medical Design Sourcing
  • Medical Design & Outsourcing
  • Medical Tubing + Extrusion
  • Subscribe to our E-Newsletter
  • Contact Us
  • About Us
  • R&D World
  • Drug Delivery Business News
  • Pharmaceutical Processing World

Copyright © 2025 WTWH Media LLC. All Rights Reserved. The material on this site may not be reproduced, distributed, transmitted, cached or otherwise used, except with the prior written permission of WTWH Media
Privacy Policy | Advertising | About Us

Search Drug Discovery & Development

  • Home Drug Discovery and Development
  • Drug Discovery
  • Women in Pharma and Biotech
  • Oncology
  • Neurological Disease
  • Infectious Disease
  • Resources
    • Video features
    • Podcast
    • Webinars
  • Pharma 50
    • 2025 Pharma 50
    • 2024 Pharma 50
    • 2023 Pharma 50
    • 2022 Pharma 50
    • 2021 Pharma 50
  • Advertise
  • SUBSCRIBE