Drug Discovery and Development

  • Home Drug Discovery and Development
  • Drug Discovery
  • Women in Pharma and Biotech
  • Oncology
  • Neurological Disease
  • Infectious Disease
  • Resources
    • Video features
    • Podcast
    • Voices
    • Webinars
  • Pharma 50
    • 2025 Pharma 50
    • 2024 Pharma 50
    • 2023 Pharma 50
    • 2022 Pharma 50
    • 2021 Pharma 50
  • Advertise
  • SUBSCRIBE

Researchers “smell” new receptors that underlie many actions of anesthetic drug

By Drug Discovery Trends Editor | April 2, 2015

Their most recent study looked at ketamine, an anesthetic discovered in the 1960s and more recently prescribed as an anti-depressant at low doses.  Through collaboration with the University of Pennsylvania’s department of Chemistry and scientists at the Duke University Medical Center, researchers at Penn’s Perelman School of Medicine have identified an entirely new class of receptors that ketamine binds  in the body, which may underlie its diverse actions. The work is published in this week’s issue of Science Signaling.

Ketamine is believed to act through glutamate receptors to produce anesthesia, but this is unlikely to explain the anti-depressant effect; most antidepressants target G-protein coupled receptors (GCPRs), the largest class of druggable receptors, located in the body’s central nervous system (CNS).  To explore the GCPR class of receptors, the investigators screened proteins present in the mouse nasal epithelium, olfactory receptors (ORs), which typically respond very selectively to compounds in the air, giving rise to smell. It turns out that these ORs are also present throughout the nervous system.  ORs make up the largest group of GCPRs, yet they are unexplored as transducing components of general anesthesia or of antidepressants.  

“Our hope is that we can visualize the precise molecular interactions between ketamine and ORs, and in turn, learn how this old drug interacts with these and other GCPRs throughout the central nervous system,” says the study’s senior author, Roderic Eckenhoff, MD, the Austin Lamont Professor of Anesthesiology and Critical Care at Penn. 

Eckenhoff and a team at Duke University began their study by screening ORs of mice and found that ketamine activated only two types out of more than several hundred, known as MOR136 and MOR139. They then used computational modeling and simulation approaches with Jeffery Saven, PhD, professor of Chemistry at Penn to generate structural models of these ORs and to understand exactly how they recognize ketamine.  Several amino acid residues were identified as critical determinants. The team found that by mutating these amino acids, they could turn ketamine responsiveness both on and off.

They also tested these conclusions in mice by stimulating the olfactory epithelium via intranasal application of ketamine and showed that olfactory sensory neurons that expressed these unique ORs responded to ketamine, suggesting that ORs may truly serve as functional targets for ketamine. 

“Here we provide evidence that ketamine has a highly specific interaction with the ORs, indicating that at least some of ketamine’s actions may result from these or other GCPRs in the central nervous system,” says Eckenhoff, noting that “our rigorous combination of simulation and experiment indicates that we can design receptors to respond specifically to certain drugs, which gets us one step closer to doing the opposite and designing drugs to interact specifically with certain receptors.”

Source:  University of Pennsylvania


Filed Under: Drug Discovery

 

Related Articles Read More >

Sanders, King target DTC pharma ads but the industry worries more about threats to its $2B R&D model
Zoliflodacin wins FDA nod for treatment of gonorrhea
FDA approved ENFLONSIA for the prevention of RSV in Infants
First clinical study results of Dupixent for atopic dermatitis in patients with darker skin tones 
“ddd
EXPAND YOUR KNOWLEDGE AND STAY CONNECTED
Get the latest news and trends happening now in the drug discovery and development industry.

MEDTECH 100 INDEX

Medtech 100 logo
Market Summary > Current Price
The MedTech 100 is a financial index calculated using the BIG100 companies covered in Medical Design and Outsourcing.
Drug Discovery and Development
  • MassDevice
  • DeviceTalks
  • Medtech100 Index
  • Medical Design Sourcing
  • Medical Design & Outsourcing
  • Medical Tubing + Extrusion
  • Subscribe to our E-Newsletter
  • Contact Us
  • About Us
  • R&D World
  • Drug Delivery Business News
  • Pharmaceutical Processing World

Copyright © 2025 WTWH Media LLC. All Rights Reserved. The material on this site may not be reproduced, distributed, transmitted, cached or otherwise used, except with the prior written permission of WTWH Media
Privacy Policy | Advertising | About Us

Search Drug Discovery & Development

  • Home Drug Discovery and Development
  • Drug Discovery
  • Women in Pharma and Biotech
  • Oncology
  • Neurological Disease
  • Infectious Disease
  • Resources
    • Video features
    • Podcast
    • Voices
    • Webinars
  • Pharma 50
    • 2025 Pharma 50
    • 2024 Pharma 50
    • 2023 Pharma 50
    • 2022 Pharma 50
    • 2021 Pharma 50
  • Advertise
  • SUBSCRIBE