Drug Discovery and Development

  • Home Drug Discovery and Development
  • Drug Discovery
  • Women in Pharma and Biotech
  • Oncology
  • Neurological Disease
  • Infectious Disease
  • Resources
    • Video features
    • Podcast
    • Webinars
  • Pharma 50
    • 2025 Pharma 50
    • 2024 Pharma 50
    • 2023 Pharma 50
    • 2022 Pharma 50
    • 2021 Pharma 50
  • Advertise
  • SUBSCRIBE

Researchers Discover Potential Antidote to Botulism

By American Society for Microbiology | November 6, 2018

Researchers have identified a compound that strongly inhibits botulinum neurotoxin, the most toxic compound known. That inhibiting compound, nitrophenyl psoralen (NPP), could be used as a treatment to reduce paralysis induced by botulism. Botulinum neurotoxin is considered a potential bioweapon because there is no FDA-approved antidote. The research is published in Applied and Environmental Microbiology, a journal of the American Society for Microbiology.

In the study, the investigators’ first step was to identify the enzyme within botulinum neurotoxin that damages neurons, causing paralysis. They then screened a library containing more than 300 natural compounds from extracts of Indian medicinal plants, searching for enzymes that could neutralize the neuron-damaging activity.

“Using high throughput screening, we identified one of the compounds, nitrophenyl psoralen, as having particularly strong activity against the neuron-damaging enzyme,” said corresponding author Bal Ram Singh, Professor and Director, Botulinum Research Center, Institute of Advanced Sciences, Dartmouth, MA.

The investigators then tested NPP’s activity in vitro and in cell culture against botulinum neurotoxin type A, which is the most potent serotype among the seven serotypes of botulinum toxin. NPP type A had powerful anti-botulinum toxin activity, with low toxicity to human cells.

“NPP also showed activity to reverse the mouse muscle paralysis induced by botulinum neurotoxin type A,” said Dr. Singh.

Although fewer than 200 botulism cases occur worldwide, annually, “these cost more to treat than the millions of salmonella outbreaks that occur, making botulism the most expensive form of food poisoning,” said Singh. Botulinum toxin is produced by Clostridium botulinum, a soil bacterium that is ubiquitous, and hard to kill. The spores can survive being boiled.

Botulism can be acquired through routes other than food poisoning, such as through wound contamination, and via colonization of the digestive tracts of children and infants.

Psoralen derived drugs are already approved by the FDA in the United States. That would likely hasten the drug approval process for NPP, said Singh.

The research originated from Singh’s group’s work on biochemical basis of Ayurveda, an herbal medicine system widely used in India. Natural products, such as those used in Ayurveda, have more diversified structures, lower toxicity, and better drug-like properties than synthetics. As Founding Director with the Center for Indic Studies at UMass Dartmouth, he considered natural herbal compounds as source of countermeasures against botulism. This led to discussions, and then to a collaboration on this work with Professor Virinder Parmar, head of the Chemistry Department at the University of Delhi.

SOURCE: American Society for Microbiology


Filed Under: Infectious Disease

 

Related Articles Read More >

covid-19 vaccine
FDA COVID booster pullback jolts vaccine stocks before gains cool
Coronavirus Covid-19 background - 3d rendering
Pregnancy associated with less long COVID: Researchers call for studies on protective biology
How technology advances are helping scientists unlock the mysteries of zoonotic diseases
Novel coronovirus
Advances in next generation vaccine development for SARS-CoV-2
“ddd
EXPAND YOUR KNOWLEDGE AND STAY CONNECTED
Get the latest news and trends happening now in the drug discovery and development industry.

MEDTECH 100 INDEX

Medtech 100 logo
Market Summary > Current Price
The MedTech 100 is a financial index calculated using the BIG100 companies covered in Medical Design and Outsourcing.
Drug Discovery and Development
  • MassDevice
  • DeviceTalks
  • Medtech100 Index
  • Medical Design Sourcing
  • Medical Design & Outsourcing
  • Medical Tubing + Extrusion
  • Subscribe to our E-Newsletter
  • Contact Us
  • About Us
  • R&D World
  • Drug Delivery Business News
  • Pharmaceutical Processing World

Copyright © 2025 WTWH Media LLC. All Rights Reserved. The material on this site may not be reproduced, distributed, transmitted, cached or otherwise used, except with the prior written permission of WTWH Media
Privacy Policy | Advertising | About Us

Search Drug Discovery & Development

  • Home Drug Discovery and Development
  • Drug Discovery
  • Women in Pharma and Biotech
  • Oncology
  • Neurological Disease
  • Infectious Disease
  • Resources
    • Video features
    • Podcast
    • Webinars
  • Pharma 50
    • 2025 Pharma 50
    • 2024 Pharma 50
    • 2023 Pharma 50
    • 2022 Pharma 50
    • 2021 Pharma 50
  • Advertise
  • SUBSCRIBE