Drug Discovery and Development

  • Home Drug Discovery and Development
  • Drug Discovery
  • Women in Pharma and Biotech
  • Oncology
  • Neurological Disease
  • Infectious Disease
  • Resources
    • Video features
    • Podcast
    • Webinars
  • Pharma 50
    • 2025 Pharma 50
    • 2024 Pharma 50
    • 2023 Pharma 50
    • 2022 Pharma 50
    • 2021 Pharma 50
  • Advertise
  • SUBSCRIBE

Regulatory Mechanism for Cell Identity and Behavior in Forming Organs

By Drug Discovery Trends Editor | November 6, 2008

Two proteins interact in a previously unknown molecular mechanism that may have broad implications in future studies looking the causes of defective organs in fetuses, metastatic cancers and other diseases, according to researchers at Cincinnati Childrens Hospital Medical Center.

Reporting their work in the Nov. 1 Genes & Development, the researchers said the mechanism coordinates cell identity and behavior in the forming organs of embryos.

‘Our study helps address the current challenge of finding out where cell specificity comes from, how cells do what they do in the context of disease and development, and how these activities are regulated,’ said Aaron Zorn, PhD, a researcher in the Division of Developmental Biology at Cincinnati Childrens and the study’s corresponding author. ‘This helps inform research into how we tell early stem cells what to become. If someone has diabetes, for example, how do we tell a cell to become a pancreas cell so it will produce insulin?’

The study involved embryos of Xenopus frogs, a species indigenous to Africa often used in early biomedical studies. The scientists discovered a signaling protein very common in developmental biology, Wnt11 (Wingless), has to be inhibited by the modulating protein Sfrp5 (Secreted Frizzled Related Protein), a known antagonist of Wnt. Without this restriction, Wnt signaling runs amok and the frogs foregut, liver, and pancreas form improperly from a cascade of disorganized cell growth.

‘We point out that Wnt has two key roles here – one controlling the cell expression pathway to tell cells what they are supposed to be, and the other controlling the pathway for cell movement, behavior, and adhesion,’ said Dr. Zorn, also associate professor of pediatrics at the University of Cincinnati (UC) College of Medicine. Without Sfrp5 controlling what Wnt does in both pathways, things go horribly wrong in the developing foregut and its organs.

The Wnt signaling pathway is a complex network of proteins best known for their role in stimlating cell behavior during embryo development and in cancer. They also are involved in normal physiological processes in adult animals. Parts of the Wnt pathway have been conserved between species during the long course of evolution, all the way from simple roundworms to humans.

Previous research in Xenopus has established that a low level of activity from a molecule called B-catenin – which promotes cell-to-cell adhesion and is part of the Wnt pathway – is necessary to maintain accurate foregut formation and initiate liver and pancreas development. Unknown before the study by Dr. Zorns team was which Wnt genes are involved and how Wnt and B-catenin activity are regulated along the frogs developing anterior-posterior body axis.

During the very early phases of embryo development – when the organism is still essentially flattened layers of cells called an endoderm – Dr. Zorns team found Wnts stimulation of B-catenin must be restricted in the anterior region so the tissue of forming foregut organs maintain its integrity. Their experiments showed that Sfrp5 steps in at the right time and place to repress Wnt signaling, allowing the cells to form an epithelial sheet, or lining – an essential step in organ development.

In one experiment, when researchers removed the Sfrp5 protein, the resulting Sfrp5-depleted Xenopus embryos had smaller foregut cavities filled with unorganized early-stage endoderm cells, which were incapable of properly forming liver and pancreatic organs.

Dr. Zorn and colleagues said their results have possible implications in metastatic cancer. For one, Sfrp proteins are already known to be tumor suppressors that are genetically inactivated in some cancers as they progress to aggressive carcinomas. Carcinomas typically originate in epithelial cells – which form linings surrounding the surfaces and cavities of many body structures – then spread into surrounding organs and tissues.

In cancer development, the research team is suggesting a loss of Sfrp function may unleash Wnt to trigger elevated B-catenin expression, allowing its stimulation of cell-to-cell adhesion to proliferate quickly. Rapid cell proliferation and adhesion are common in cancerous and pre-cancerous conditions. It could also let Wnt send improper signals that cause a loss of structural integrity in epithelial cells, allowing cancer to spread, or metastasize.

‘We talked about this mechanism in the context of cancer because the control of cell specificity, and of movement and behavior, also occurs in cancer,’ Dr. Zorn said. ‘Cells will start to proliferate out of control and then, when a cancer starts to go metastatic, they will also start to change behavior. They become motile, moving spontaneously and actively, and they become invasive.’

The early stage nature of the study means it would be premature to suggest the Wnt11-Sfrp5 mechanism might become the basis of diagnostic or therapeutic strategies for patients, Dr. Zorn said. The next step is to use these results as a basis for future studies, probably involving mice, to verify the mechanisms applicability to mammalian embryo development and see how it affects disease, he said.

Release Date: October 31, 2008
Source: Cincinnati Children’s Hospital Medical Center


Filed Under: Genomics/Proteomics

 

Related Articles Read More >

Spatial biology: Transforming our understanding of cellular environments
DNA double helix transforming into bar graphs, blue and gold, crisp focus on each strand, scientific finance theme --ar 5:4 --personalize 3kebfev --v 6.1 Job ID: f40101e1-2e2f-4f40-8d57-2144add82b53
Biotech in 2025: Precision medicine, smarter investments, and more emphasis on RWD in clinical trials
DNA helix 3D illustration. Mutations under microscope. Decoding genome. Virtual modeling of chemical processes. Hi-tech in medicine
Genomics in 2025: How $500 whole genome sequencing could democratize genomic data
A media release and Scientific Report image of Elizabeth Kellogg. - Camera Settings: ILCE-9M2, 12mm, ISO 1000, 1/80, f/3.2, Fri, 04-19-2024 at 10:10. v.12.01.23
St. Jude pioneers gene editing and structural biology to advance pediatric research
“ddd
EXPAND YOUR KNOWLEDGE AND STAY CONNECTED
Get the latest news and trends happening now in the drug discovery and development industry.

MEDTECH 100 INDEX

Medtech 100 logo
Market Summary > Current Price
The MedTech 100 is a financial index calculated using the BIG100 companies covered in Medical Design and Outsourcing.
Drug Discovery and Development
  • MassDevice
  • DeviceTalks
  • Medtech100 Index
  • Medical Design Sourcing
  • Medical Design & Outsourcing
  • Medical Tubing + Extrusion
  • Subscribe to our E-Newsletter
  • Contact Us
  • About Us
  • R&D World
  • Drug Delivery Business News
  • Pharmaceutical Processing World

Copyright © 2025 WTWH Media LLC. All Rights Reserved. The material on this site may not be reproduced, distributed, transmitted, cached or otherwise used, except with the prior written permission of WTWH Media
Privacy Policy | Advertising | About Us

Search Drug Discovery & Development

  • Home Drug Discovery and Development
  • Drug Discovery
  • Women in Pharma and Biotech
  • Oncology
  • Neurological Disease
  • Infectious Disease
  • Resources
    • Video features
    • Podcast
    • Webinars
  • Pharma 50
    • 2025 Pharma 50
    • 2024 Pharma 50
    • 2023 Pharma 50
    • 2022 Pharma 50
    • 2021 Pharma 50
  • Advertise
  • SUBSCRIBE