Drug Discovery and Development

  • Home Drug Discovery and Development
  • Drug Discovery
  • Genomics/Proteomics
  • Oncology
  • Neurological Disease
  • Infectious Disease
  • R&D 100 Awards
  • Pharma 50
    • 2022 Pharma 50
    • 2021 Pharma 50

Protein Fuels Repair of Treatment-Resistant Cancer Cells

By Drug Discovery Trends Editor | July 31, 2014

(Left column) Untreated head and neck cancer cells are tagged fluorescent green. (Right column) Shows cells treated with the chemical inhibitor that blocks TRIP13, which results in a dramatically smaller tumor. (Source: University of Michigan/Rajat Banerjee)Imagine you’re fighting for your life but no matter how hard you hit, your opponent won’t go down.
 
The same can be said of highly treatment-resistant cancers, such as head and neck cancer, where during radiation and chemotherapy some cancer cells repair themselves, survive and thrive. Head and neck cancer is the sixth most common cancer in the world, but the late detection and treatment resistance result in a high mortality rate.
 
Now, University of Michigan researchers have found that a particular protein— TRIP13— encourages those cancer cells to repair themselves. And they have identified an existing chemical that blocks this mechanism for cell repair.
 
“This is a very significant advance, because identifying the function of the protein that fuels the repair of cancer cells and having an existing chemical that blocks the process, could speed the process of moving to clinical trials,” said principal investigator Nisha D’Silva, U-M professor of dentistry and associate professor of pathology.
 
Typically, if scientists discover a promising drug therapy target, it takes years to develop drug compounds from scratch and move these into clinical trials.
 
If cell DNA is damaged and the cell cannot repair the damage, the cell dies. In head and neck cancers, D’Silva and colleagues showed that cancer cells that overexpress TRIP13 were able to repair their DNA enough to survive and continue to grow as cancer.
 
“Targeting this repair mechanism with specific drugs could increase effectiveness of treatment and improve survival of cancer patients,” D’Silva said. “And given the overexpression of TRIP13 in several treatment-resistant cancers, this strategy will likely be important for multiple cancers.”
 
The study, “TRIP13 promotes error-prone nonhomologous end joining and induces chemoresistance in head and neck cancer,” is scheduled to appear online in Nature Communications. Rajat Banerjee of the U-M School of Dentistry is first author.
 
Date: July 31, 2014
Source: University of Michigan

Filed Under: Drug Discovery

 

Related Articles Read More >

Pharmacovigilance
A new era of pharmacovigilance: Worldwide master key for drug safety monitoring
Takeda Pharmaceutical in the Drug Discovery & Development Pharma 50
Takeda’s Takhzyro fares well in pediatric hereditary angioedema study
Novartis in the Pharma 50
Novartis to cut up to 8,000 positions
Gilead Sciences in the Drug Discovery & Development Pharma 50
Gilead resubmits application to FDA for twice-yearly HIV drug lenacapavir

MEDTECH 100 INDEX

Medtech 100 logo
Market Summary > Current Price
The MedTech 100 is a financial index calculated using the BIG100 companies covered in Medical Design and Outsourcing.

Need Drug Discovery news in a minute?

We Deliver!
Drug Discovery & Development Enewsletters get you caught up on all the mission critical news you need. Sign up today.
Enews Signup
Drug Discovery and Development
  • MASSDEVICE
  • DEVICETALKS
  • Medical Design & Outsourcing
  • MEDICAL TUBING + EXTRUSION
  • MEDTECH 100
  • Medical Design Sourcing
  • Subscribe to our Free E-Newsletter
  • Contact Us
  • About Us
  • Advertise With Us
  • R&D World
  • Drug Delivery Business News
  • Pharmaceutical Processing World

Copyright © 2022 WTWH Media LLC. All Rights Reserved. The material on this site may not be reproduced, distributed, transmitted, cached or otherwise used, except with the prior written permission of WTWH Media
Privacy Policy | Advertising | About Us

Search Drug Discovery & Development

  • Home Drug Discovery and Development
  • Drug Discovery
  • Genomics/Proteomics
  • Oncology
  • Neurological Disease
  • Infectious Disease
  • R&D 100 Awards
  • Pharma 50
    • 2022 Pharma 50
    • 2021 Pharma 50