Drug Discovery and Development

  • Home Drug Discovery and Development
  • Drug Discovery
  • Women in Pharma and Biotech
  • Oncology
  • Neurological Disease
  • Infectious Disease
  • Resources
    • Video features
    • Podcast
    • Voices
    • Webinars
  • Pharma 50
    • 2025 Pharma 50
    • 2024 Pharma 50
    • 2023 Pharma 50
    • 2022 Pharma 50
    • 2021 Pharma 50
  • Advertise
  • SUBSCRIBE

Potential New Drug Class Hits Multiple Cancer Cell Targets

By UCSD | February 3, 2017

MYC is a regulator gene. It controls the expression of other genes and codes transcription factors or proteins involved in many fundamental cellular processes. It’s also among the most frequently altered genes found in cancer, making it a profoundly attractive target for cancer therapies.

But MYC has proved very complicated and an elusive therapeutic target. In a new paper published this week in PNAS, researchers at the University of California San Diego School of Medicine and Moores Cancer Center, in collaboration with colleagues at Rady Children’s Hospital-San Diego, the University of Colorado School of Medicine and SignalRx, a San Diego-based biopharmaceutical company, describe a potential new class of anti-cancer drugs that inhibit two or more molecular targets at once, maximizing therapeutic efficiency and safety.

“Most anti-cancer drugs have a single target. They try to do one thing, such as block a single receptor or signaling pathway,” said study co-senior author Donald L. Durden, MD, PhD, professor in the Department of Pediatrics at UC San Diego School of Medicine and associate director for pediatric oncology at Moores Cancer Center at UC San Diego Health. “This paper is proof-of-concept of a completely different mode of drug discovery clearly separated from the standard practice of one drug, one target.”

Specifically, Durden and colleagues engineered a small molecule called SF2523 in silico, using molecular modeling crystal structure and nuclear magnetic resonance imaging, to simultaneously disrupt two key MYC-mediating factors that promote cancer cell growth. Those two factors are PI3K, an enzyme, and BRD4, a protein.

In cell and mouse models, they found SF2523 concomitantly inhibited PI3K and BRD4, blocking MYC activation and expression and markedly inhibiting cancer growth and metastasis, with improved efficacy and less toxicity to the host.

“This is a ‘first in class’ approach to achieve a maximum inhibition of MYC in the treatment of the multitude of cancers known to be driven by the MYC oncogene,” said Durden. “These findings suggest that dual-activity inhibitors are a highly promising lead compound for developing new anticancer therapeutics.”


Filed Under: Genomics/Proteomics

 

Related Articles Read More >

Spatial biology: Transforming our understanding of cellular environments
DNA double helix transforming into bar graphs, blue and gold, crisp focus on each strand, scientific finance theme --ar 5:4 --personalize 3kebfev --v 6.1 Job ID: f40101e1-2e2f-4f40-8d57-2144add82b53
Biotech in 2025: Precision medicine, smarter investments, and more emphasis on RWD in clinical trials
DNA helix 3D illustration. Mutations under microscope. Decoding genome. Virtual modeling of chemical processes. Hi-tech in medicine
Genomics in 2025: How $500 whole genome sequencing could democratize genomic data
A media release and Scientific Report image of Elizabeth Kellogg. - Camera Settings: ILCE-9M2, 12mm, ISO 1000, 1/80, f/3.2, Fri, 04-19-2024 at 10:10. v.12.01.23
St. Jude pioneers gene editing and structural biology to advance pediatric research
“ddd
EXPAND YOUR KNOWLEDGE AND STAY CONNECTED
Get the latest news and trends happening now in the drug discovery and development industry.

MEDTECH 100 INDEX

Medtech 100 logo
Market Summary > Current Price
The MedTech 100 is a financial index calculated using the BIG100 companies covered in Medical Design and Outsourcing.
Drug Discovery and Development
  • MassDevice
  • DeviceTalks
  • Medtech100 Index
  • Medical Design Sourcing
  • Medical Design & Outsourcing
  • Medical Tubing + Extrusion
  • Subscribe to our E-Newsletter
  • Contact Us
  • About Us
  • R&D World
  • Drug Delivery Business News
  • Pharmaceutical Processing World

Copyright © 2025 WTWH Media LLC. All Rights Reserved. The material on this site may not be reproduced, distributed, transmitted, cached or otherwise used, except with the prior written permission of WTWH Media
Privacy Policy | Advertising | About Us

Search Drug Discovery & Development

  • Home Drug Discovery and Development
  • Drug Discovery
  • Women in Pharma and Biotech
  • Oncology
  • Neurological Disease
  • Infectious Disease
  • Resources
    • Video features
    • Podcast
    • Voices
    • Webinars
  • Pharma 50
    • 2025 Pharma 50
    • 2024 Pharma 50
    • 2023 Pharma 50
    • 2022 Pharma 50
    • 2021 Pharma 50
  • Advertise
  • SUBSCRIBE