Endra Life Sciences has launched the Nexus 128, a preclinical photoacoustic computed tomography (CT) scanner for small animal imaging. The system is used for simple, fast, non-invasive quantification of tumor vasculature and other physiological parameters for preclinical research. Because the Nexus 128 makes in vivo quantification of tumor vasculature possible without the need for contrast agents, it promises to help preclinical researchers gain deeper insight into areas such as how drugs treat disease and cancer progression, without ionizing radiation or complicated equipment.
Endra Life Sciences was founded by Enlight Biosciences, a funding syndicate of six of the world’s leading pharmaceutical companies focused on commercializing transformational technologies.
“Photoacoustic imaging combines the strengths of optical imaging, based on the same principles that give cells, organs, and tissues their unique colors, with ultrasound,” said Michael Thornton, Endra’s President and Chief Operating Officer. “It provides high spatial resolution at depth far exceeding that of conventional optical imaging techniques such as fluorescence and bioluminescence. We are excited to make this technology widely available to cancer biology researchers for the first time.”
“Mouse models of cancer are used extensively to study tumor development and the effects of new therapies, but until now the tools to measure this effect have had depth limitations,” said Dr. Rakesh Jain, Director, Edwin L. Steele Laboratory for Tumor Biology at Harvard Medical School, and Enlight Biosciences Advisor. “The ability to track abnormal vessel growth and normalization in vivo with high resolution throughout a tumor mass during therapeutic intervention is a powerful new capability that will be widely used in cancer research.”
The name Nexus 128 represents the convergence of light and sound in a powerful new imaging approach. It employs a detector array consisting of 128 individual acoustic receiver elements arranged in a patented geometry. The system generates multispectral, quantitative, three dimensional images of tumor vasculature and hemoglobin concentration in under 2 minutes, and completes volumetric anatomical scans in as little as 12 seconds. “For the past several years, our research group has developed quantitative photoacoustic spectroscopy imaging techniques and applied them to mouse models of cancer,” said Dr. Keith Stantz, faculty member of Purdue University. “We have been using Endra’s photoacoustic tomography prototype system regularly for the past year. The simplified animal handling and high throughput allow us to image entire study groups within a couple of hours.”
Filed Under: Drug Discovery