Drug Discovery and Development

  • Home Drug Discovery and Development
  • Drug Discovery
  • Women in Pharma and Biotech
  • Oncology
  • Neurological Disease
  • Infectious Disease
  • Resources
    • Video features
    • Podcast
    • Webinars
  • Pharma 50
    • 2025 Pharma 50
    • 2024 Pharma 50
    • 2023 Pharma 50
    • 2022 Pharma 50
    • 2021 Pharma 50
  • Advertise
  • SUBSCRIBE

Novel Precision Cancer Model Opens Doors To Personalized Cancer Treatment

By Spanish National Cancer Research Center | April 16, 2018

Researchers from the Seve Ballesteros Foundation-CNIO Brain Tumour Group at the Spanish National Cancer Research Centre (CNIO) have developed an extremely powerful and versatile mouse model that will improve cancer research and accelerate pre-clinical testing of novel targeted therapies. Their work appears in Nature Communications.

“A current high priority in cancer research is to functionally validate candidate genetic alterations that are relevant for cancer progression and treatment response. In order to do so, it is essential to develop flexible models that can speed up the identification of cancer driver genes among the large number of passenger alterations,” the authors say.

In order to achieve this, researchers led by Massimo Squatrito combined two technologies—the genome editing tool CRISPR-Cas9 and the gene delivery system RCAS/TVA—to generate a mouse model that brings the possibility of mimicking the genetic complexity of cancer. Barbara Oldrini and Álvaro Curiel-García, co-lead authors in the study, used this novel model to recapitulate some of the genetic alterations found in gliomas.

In particular, they studied a gene fusion encoding a family of kinases called NTRK and a common mutation of the BRAF gene, both identified not only in glioma but also in other tumour types. “What we have shown using this new model is that we now have the ability to generate specific complex genetic alterations and to study how they contribute to glioma pathogenesis,” explains Squatrito.

Moreover, the researchers used these models to study different therapeutic approaches currently used in the clinic and to analyse the mechanisms of resistance that could lead to tumour recurrence. Based on their findings, they suggest possible alternative treatments that might be used to overcome the acquired resistance to TRK and BRAF inhibitors.

“We can efficiently recreate a variety of genetic alterations, including gene translocations and point mutations, and we can move fast from the mouse model to the translational studies,” explains Squatrito. “Here we have shown that this approach is feasible and we believe that such a flexible model will greatly accelerate the pre-clinical testing of novel targeted therapies,” he concludes.

(Source: Spanish National Cancer Research Center)


Filed Under: Drug Discovery

 

Related Articles Read More >

Lokavant’s Spectrum v15 uses AI to cut trial-feasibility modeling from weeks to minutes
Prime time for peptide-based drug discovery 
Why smaller, simpler molecular glues are gaining attention in drug discovery
Glass vial, pipette and woman scientist in laboratory for medical study, research or experiment. Test tube, dropper and professional female person with chemical liquid for pharmaceutical innovation
Unlocking ‘bench-to-bedside’ discoveries requires better data sharing and collaboration
“ddd
EXPAND YOUR KNOWLEDGE AND STAY CONNECTED
Get the latest news and trends happening now in the drug discovery and development industry.

MEDTECH 100 INDEX

Medtech 100 logo
Market Summary > Current Price
The MedTech 100 is a financial index calculated using the BIG100 companies covered in Medical Design and Outsourcing.
Drug Discovery and Development
  • MassDevice
  • DeviceTalks
  • Medtech100 Index
  • Medical Design Sourcing
  • Medical Design & Outsourcing
  • Medical Tubing + Extrusion
  • Subscribe to our E-Newsletter
  • Contact Us
  • About Us
  • R&D World
  • Drug Delivery Business News
  • Pharmaceutical Processing World

Copyright © 2025 WTWH Media LLC. All Rights Reserved. The material on this site may not be reproduced, distributed, transmitted, cached or otherwise used, except with the prior written permission of WTWH Media
Privacy Policy | Advertising | About Us

Search Drug Discovery & Development

  • Home Drug Discovery and Development
  • Drug Discovery
  • Women in Pharma and Biotech
  • Oncology
  • Neurological Disease
  • Infectious Disease
  • Resources
    • Video features
    • Podcast
    • Webinars
  • Pharma 50
    • 2025 Pharma 50
    • 2024 Pharma 50
    • 2023 Pharma 50
    • 2022 Pharma 50
    • 2021 Pharma 50
  • Advertise
  • SUBSCRIBE