Drug Discovery and Development

  • Home Drug Discovery and Development
  • Drug Discovery
  • Women in Pharma and Biotech
  • Oncology
  • Neurological Disease
  • Infectious Disease
  • Resources
    • Video features
    • Podcast
    • Webinars
  • Pharma 50
    • 2025 Pharma 50
    • 2024 Pharma 50
    • 2023 Pharma 50
    • 2022 Pharma 50
    • 2021 Pharma 50
  • Advertise
  • SUBSCRIBE

Newly Discovered Gene Plays Role in Cancer

By Drug Discovery Trends Editor | March 2, 2009

Scientists at Karolinska Institutet in Sweden have shown that a previously unknown gene, Wrap53, controls the activity of the gene p53. As the regulation mechanism is relatively unexplored, the study opens up new routes to solving the mystery of cancer.

The p53 gene makes sure that cells with damaged DNA either repair themselves or commit suicide. If p53 itself is damaged, which is the case in roughly half of all cancer tumors, cells that are on their way to becoming cancerous are allowed to survive. Much cancer research revolves around the cell processes that p53 induces.

A group of researchers at Karolinska Institutet have now identified a new gene, called Wrap53, that regulates the activity of p53. The study, which is published in the journal Molecular Cell, demonstrates that Wrap53 gives rise to a molecule, called antisense RNA, the presence of which is necessary for the production of sufficient quantities of p53 protein in the event of DNA damage.

According to Marianne Farnebo, one of the scientists involved in the study, the results indicate that damage to Wrap53 can indirectly cause cancer. Wrap53 is therefore a new potential target for future cancer therapies.

“Mutations in the p53 gene contribute to about half of all cancer cases,” she says. “In the remaining half, p53 is probably inactivated in other ways, such as damage to Wrap53 knocking out the production of the p53 protein.”

The study is also one of the first to show how antisense RNA regulates genes in the human body. It is known that genes often control each other through the influence of their end products, usually proteins, on gene expression. With antisense regulation, control is effected instead through the production of mutually stabilizing or destructive RNA molecules by genes with overlapping sequences, which determines whether or not the RNA molecules form proteins.

“At least 20 per cent of all genes can be regulated by antisense RNA, making it a potentially very common control mechanism,” says Dr Farnebo. “But it’s been difficult to show that antisense RNA really does serve important functions in the body, as we’ve managed to do in this study.”

Release Date: February 27, 2009
Source: Karolinska Institutet 

 


Filed Under: Genomics/Proteomics

 

Related Articles Read More >

Spatial biology: Transforming our understanding of cellular environments
DNA double helix transforming into bar graphs, blue and gold, crisp focus on each strand, scientific finance theme --ar 5:4 --personalize 3kebfev --v 6.1 Job ID: f40101e1-2e2f-4f40-8d57-2144add82b53
Biotech in 2025: Precision medicine, smarter investments, and more emphasis on RWD in clinical trials
DNA helix 3D illustration. Mutations under microscope. Decoding genome. Virtual modeling of chemical processes. Hi-tech in medicine
Genomics in 2025: How $500 whole genome sequencing could democratize genomic data
A media release and Scientific Report image of Elizabeth Kellogg. - Camera Settings: ILCE-9M2, 12mm, ISO 1000, 1/80, f/3.2, Fri, 04-19-2024 at 10:10. v.12.01.23
St. Jude pioneers gene editing and structural biology to advance pediatric research
“ddd
EXPAND YOUR KNOWLEDGE AND STAY CONNECTED
Get the latest news and trends happening now in the drug discovery and development industry.

MEDTECH 100 INDEX

Medtech 100 logo
Market Summary > Current Price
The MedTech 100 is a financial index calculated using the BIG100 companies covered in Medical Design and Outsourcing.
Drug Discovery and Development
  • MassDevice
  • DeviceTalks
  • Medtech100 Index
  • Medical Design Sourcing
  • Medical Design & Outsourcing
  • Medical Tubing + Extrusion
  • Subscribe to our E-Newsletter
  • Contact Us
  • About Us
  • R&D World
  • Drug Delivery Business News
  • Pharmaceutical Processing World

Copyright © 2025 WTWH Media LLC. All Rights Reserved. The material on this site may not be reproduced, distributed, transmitted, cached or otherwise used, except with the prior written permission of WTWH Media
Privacy Policy | Advertising | About Us

Search Drug Discovery & Development

  • Home Drug Discovery and Development
  • Drug Discovery
  • Women in Pharma and Biotech
  • Oncology
  • Neurological Disease
  • Infectious Disease
  • Resources
    • Video features
    • Podcast
    • Webinars
  • Pharma 50
    • 2025 Pharma 50
    • 2024 Pharma 50
    • 2023 Pharma 50
    • 2022 Pharma 50
    • 2021 Pharma 50
  • Advertise
  • SUBSCRIBE