Drug Discovery and Development

  • Home Drug Discovery and Development
  • Drug Discovery
  • Women in Pharma
  • Oncology
  • Neurological Disease
  • Infectious Disease
  • R&D 100 Awards
  • Pharma 50
    • 2022 Pharma 50
    • 2021 Pharma 50

New Technique Identifies Novel Drug Combination for Non-small Cell Lung Cancer

By Moffit Cancer Center | October 1, 2018

Lung cancer is the leading cause of cancer death among men and women. About 85 percent of lung cancers are non-small cell lung cancer. For a handful of these patients, therapies that target specific genetic mutations are effective. But for the majority of non-small cell lung cancer patients, targeted therapies are limited and many patients develop resistance to treatment, highlighting the need for other options. 

Moffitt Cancer Center researchers are combining the large-scale study of proteins (proteomics) with a new data integration method to identify a previously unknown mechanism for midostaurin in lung cancer. Midostaurin is a drug approved by the United States Food and Drug Administration for the treatment of acute myeloid leukemia and advanced systemic mastocytosis. Their study was published in the journal Molecular & Cellular Proteomics.

The research team led by Uwe Rix, associate member of the Drug Discovery Department at Moffitt, worked to identify all of the proteins that interact with midostaurin in non-small cell lung cancer cells in the lab. They then used a data analysis technique developed in the Rix lab to further examine the pathways associated with those proteins. In the end, the researchers identified three protein targets of midostaurin, TBK1, PDPK1 and AURKA, previously unknown to be important for midostaurin’s mechanism of action in lung cancer cells. 

This discovery allowed the team to design a combination therapy using midostaurin and BI2536, a protein inhibitor currently being investigated for the treatment of multiple cancers, which had a much greater effect on reducing non-small cell lung cancer cell growth than using either drug alone.

“Our integrated proteomics approach was particularly significant in the discovery of midostaurin’s new mechanism of action, as none of the identified proteins are mutated at the gene level and would have been missed by traditional genomic screens,” said Rix. “Utilizing protein pathway analysis in combination with functional proteomic techniques opens up the possibility for the identification of previously unknown actionable drug targets and combination therapies for many different cancers.”

SOURCE: Moffit Cancer Center


Filed Under: Oncology

 

Related Articles Read More >

AstraZeneca/Daiichi-Sankyo
FDA approves Enhertu for HER2-low breast cancer
ChemoCentryx/Amgen
Amgen to pay almost $4B for ChemoCentryx
Olema Oncology
Olema Oncology’s OP-1250 could be a game-changing breast cancer drug
Merck in the Drug Discovery & Development Pharma 50
Merck halts Phase 3 Lynparza for futility

Need Drug Discovery news in a minute?

We Deliver!
Drug Discovery & Development Enewsletters get you caught up on all the mission critical news you need. Sign up today.
Enews Signup
Drug Discovery and Development
  • MassDevice
  • DeviceTalks
  • Medical Design & Outsourcing
  • Medical Tubing + Extrusion
  • Medtech100 Index
  • Medical Design Sourcing
  • Subscribe to our Free E-Newsletter
  • Contact Us
  • About Us
  • Advertise With Us
  • R&D World
  • Drug Delivery Business News
  • Pharmaceutical Processing World

Copyright © 2022 WTWH Media LLC. All Rights Reserved. The material on this site may not be reproduced, distributed, transmitted, cached or otherwise used, except with the prior written permission of WTWH Media
Privacy Policy | Advertising | About Us

Search Drug Discovery & Development

  • Home Drug Discovery and Development
  • Drug Discovery
  • Women in Pharma
  • Oncology
  • Neurological Disease
  • Infectious Disease
  • R&D 100 Awards
  • Pharma 50
    • 2022 Pharma 50
    • 2021 Pharma 50