Drug Discovery and Development

  • Home Drug Discovery and Development
  • Drug Discovery
  • Women in Pharma and Biotech
  • Oncology
  • Neurological Disease
  • Infectious Disease
  • Resources
    • Video features
    • Podcast
    • Webinars
  • Pharma 50
    • 2025 Pharma 50
    • 2024 Pharma 50
    • 2023 Pharma 50
    • 2022 Pharma 50
    • 2021 Pharma 50
  • Advertise
  • SUBSCRIBE

New Target Discovered for Preventing and Treating Flu

By Drug Discovery Trends Editor | January 31, 2008

Emerging subtypes of influenza A virus hold the potential to initiate a world-wide epidemic in the next few years, according to World Health Organization officials. However, almost all type A influenza viral strains have become resistant to amantadine and rimantadine, two drugs that make up one of only two classes used to treat the flu. Researchers at the University of Pennsylvania School of Medicine have now provided a new strategy for designing drugs that target the resistant viral strains by solving the three-dimensional structure of a viral protein called the M2 proton channel. This protein is the molecular receptor for these drugs. This study is published in the Jan. 31 issue of Nature.

The M2 protein is located in the viral envelope, forming a long, narrow channel that allows the flow of protons into the viral interior, an essential step for infection. Amantadine sits in this channel and blocks the flow of protons, thus halting infection. In non-resistant viruses, amantadine acts like a cork lodged deep in the channel.

“We know that resistance to amantadine is caused by a mutation in the virus M2 protein, but we did not know how this mutation caused resistance,” explains senior author William F. DeGrado, PhD, Professor of Biochemistry and Biophysics. “Now we do – the mutation changes the shape of the channel so amantadine can no longer do its job.”

The structure revealed that there is a pocket in the channel next to the location where amantadine fits that is conserved in all influenza A viruses. This newly discovered space could be the target for new drugs. “Inhibitors that target this cavity adjacent to two highly conserved amino acids in M2 might reclaim the M2-blocking class of drugs so that ongoing endemic outbreaks and future pandemics of this deadly virus might be prevented and treated,” says DeGrado.

Release date: January 30, 2008
Source: University of Pennsylvania School of Medicine 


Filed Under: Drug Discovery

 

Related Articles Read More >

Lokavant’s Spectrum v15 uses AI to cut trial-feasibility modeling from weeks to minutes
Prime time for peptide-based drug discovery 
Why smaller, simpler molecular glues are gaining attention in drug discovery
Glass vial, pipette and woman scientist in laboratory for medical study, research or experiment. Test tube, dropper and professional female person with chemical liquid for pharmaceutical innovation
Unlocking ‘bench-to-bedside’ discoveries requires better data sharing and collaboration
“ddd
EXPAND YOUR KNOWLEDGE AND STAY CONNECTED
Get the latest news and trends happening now in the drug discovery and development industry.

MEDTECH 100 INDEX

Medtech 100 logo
Market Summary > Current Price
The MedTech 100 is a financial index calculated using the BIG100 companies covered in Medical Design and Outsourcing.
Drug Discovery and Development
  • MassDevice
  • DeviceTalks
  • Medtech100 Index
  • Medical Design Sourcing
  • Medical Design & Outsourcing
  • Medical Tubing + Extrusion
  • Subscribe to our E-Newsletter
  • Contact Us
  • About Us
  • R&D World
  • Drug Delivery Business News
  • Pharmaceutical Processing World

Copyright © 2025 WTWH Media LLC. All Rights Reserved. The material on this site may not be reproduced, distributed, transmitted, cached or otherwise used, except with the prior written permission of WTWH Media
Privacy Policy | Advertising | About Us

Search Drug Discovery & Development

  • Home Drug Discovery and Development
  • Drug Discovery
  • Women in Pharma and Biotech
  • Oncology
  • Neurological Disease
  • Infectious Disease
  • Resources
    • Video features
    • Podcast
    • Webinars
  • Pharma 50
    • 2025 Pharma 50
    • 2024 Pharma 50
    • 2023 Pharma 50
    • 2022 Pharma 50
    • 2021 Pharma 50
  • Advertise
  • SUBSCRIBE