Drug Discovery and Development

  • Home Drug Discovery and Development
  • Drug Discovery
  • Genomics/Proteomics
  • Oncology
  • Neurological Disease
  • Infectious Disease
  • R&D 100 Awards
  • Pharma 50
    • 2022 Pharma 50
    • 2021 Pharma 50

New Strategy to Lower Blood Sugar May Help in Diabetes Treatment

By Drug Discovery Trends Editor | September 4, 2015

Brian N. Finck, Ph.D. (left), and Kyle S. McCommis, Ph.D., analyze data showing it’s possible to reduce blood sugar levels in people with diabetes by lowering glucose production in the liver. (Credit: Robert Boston)Some treatments for type 2 diabetes make the body more sensitive to insulin, the hormone that lowers blood sugar. But new research at Washington University School of Medicine in St. Louis suggests a different strategy: slowing the production of glucose in the liver.

Working in mice, the researchers showed they could reduce glucose production in the liver and lower blood sugar levels. They did so by shutting down a liver protein involved in making glucose, an approach that may work in patients with type 2 diabetes.

The research is published online in Cell Metabolism.

“We think this strategy could lead to more effective drugs for type 2 diabetes,” said principal investigator Brian N. Finck, PhD, associate professor of medicine in the Division of Geriatrics and Nutritional Science. “A drug that shuts down glucose production has the potential to help millions of people affected by the most common form of diabetes.”

Finck worked with researchers at the University of Texas Southwestern Medical Center and the biopharmaceutical company Metabolic Solutions Development Co.

The company is involved in clinical trials that are evaluating the drug compound MSDC-0602 as a treatment for diabetes. The new study demonstrates that the compound works, at least in part, by inhibiting a protein that’s key to glucose production in the liver.

The research team, led by first author Kyle S. McCommis, Ph.D., a postdoctoral research scholar, cut sugar production in liver cells by inhibiting a key protein involved in transporting pyruvate, a building block of glucose, from the bloodstream into the energy factories of liver cells, called mitochondria.

Previous research had suggested interfering with pyruvate may limit glucose production in the liver, but this study is the first to demonstrate the critical role played by the pyruvate transport protein.

In addition to diabetes, the researchers also think that interfering with pyruvate transport may help patients with nonalcoholic fatty liver disease, a condition common in people with obesity.

Funding for this research comes from the National Institute of Diabetes and Digestive and Kidney Diseases and the National Institute on Alcohol Abuse and Alcoholism of the National Institutes of Health (NIH). Additional funding comes from The Foundation for Barnes-Jewish Hospital and the Robert A.Welch Foundation.

Source: Washington University in St. Louis


Filed Under: Drug Discovery

 

Related Articles Read More >

Takeda Pharmaceutical in the Drug Discovery & Development Pharma 50
Takeda’s Takhzyro fares well in pediatric hereditary angioedema study
Novartis in the Pharma 50
Novartis to cut up to 8,000 positions
Gilead Sciences in the Drug Discovery & Development Pharma 50
Gilead resubmits application to FDA for twice-yearly HIV drug lenacapavir
George Floyd mural
How the pandemic and George Floyd made clinical trial diversity a priority

MEDTECH 100 INDEX

Medtech 100 logo
Market Summary > Current Price
The MedTech 100 is a financial index calculated using the BIG100 companies covered in Medical Design and Outsourcing.

Need Drug Discovery news in a minute?

We Deliver!
Drug Discovery & Development Enewsletters get you caught up on all the mission critical news you need. Sign up today.
Enews Signup
Drug Discovery and Development
  • MASSDEVICE
  • DEVICETALKS
  • Medical Design & Outsourcing
  • MEDICAL TUBING + EXTRUSION
  • MEDTECH 100
  • Medical Design Sourcing
  • Subscribe to our Free E-Newsletter
  • Contact Us
  • About Us
  • Advertise With Us
  • R&D World
  • Drug Delivery Business News
  • Pharmaceutical Processing World

Copyright © 2022 WTWH Media LLC. All Rights Reserved. The material on this site may not be reproduced, distributed, transmitted, cached or otherwise used, except with the prior written permission of WTWH Media
Privacy Policy | Advertising | About Us

Search Drug Discovery & Development

  • Home Drug Discovery and Development
  • Drug Discovery
  • Genomics/Proteomics
  • Oncology
  • Neurological Disease
  • Infectious Disease
  • R&D 100 Awards
  • Pharma 50
    • 2022 Pharma 50
    • 2021 Pharma 50