Drug Discovery and Development

  • Home Drug Discovery and Development
  • Drug Discovery
  • Women in Pharma and Biotech
  • Oncology
  • Neurological Disease
  • Infectious Disease
  • Resources
    • Video features
    • Podcast
    • Webinars
  • Pharma 50
    • 2025 Pharma 50
    • 2024 Pharma 50
    • 2023 Pharma 50
    • 2022 Pharma 50
    • 2021 Pharma 50
  • Advertise
  • SUBSCRIBE

New Genetic Mutation Linked to ALS

By National Institute of Neurological Disorders and Stroke | April 12, 2018

Kinesin family member 5A (KIF5A), a gene previously linked to two rare neurodegenerative disorders, has been definitively connected to amyotrophic lateral sclerosis (ALS) by an international team from several of the world’s top ALS research labs. The findings identify how mutations in KIF5A disrupt transport of key proteins up and down long, threadlike axons that connect nerve cells between the brain and the spine, eventually leading to the neuromuscular symptoms of ALS.

The discovery, published in the March 21, 2018, issue of Neuron, was led by Bryan Traynor, M.D., Ph.D., of the Intramural Research Program of the National Institute on Aging (NIA) at the National Institutes of Health and John Landers, Ph.D., of the University of Massachusetts Medical School, Worcester, with key funding support from the NIA, the National Institute of Neurological Disorders and Stroke (NINDS) at NIH, and several public and private sector organizations. Genetic data collected by teams of scientists worldwide contributed to the project.

It took a comprehensive, collaborative effort to analyze a massive amount of genetic data to pin down KIF5A as a suspect for ALS, also known as Lou Gehrig’s disease. To zero in on KIF5A, the NIH team performed a large-scale genome-wide association study, while the University of Massachusetts team concentrated on analyzing rare variants in next generation sequence data. Over 125,000 samples were used in this study, making it by far the largest such study of ALS performed to date.

“The extraordinary teamwork that went into this study underlines the value of global, collaborative science as we seek to better understand devastating diseases like ALS,” said Richard J. Hodes, M.D., director of NIA. “These types of collaborative data collection and analysis are important in identifying the pathways underlying disease and in developing approaches to treatment and prevention.”

KIF5A regulates part of the kinesin family of proteins that serve as tiny intracellular motors. Problems with these proteins are connected to ALS, Parkinson’s disease and Alzheimer’s disease. KIF5A mutations were previously known to be connected to two other rare neurodegenerative diseases with muscle weakening, stiffening and spasticity symptoms similar to ALS: hereditary spastic paraplegia type 10 (SPG10) and Charcot-Marie-Tooth Type 2 (CMT2.) Scientists suspected KIF5A might be associated with ALS but lacked definite proof until now.

“Axons extend from the brain to the bottom of the spine, forming some of the longest single cellular pathways in the body,” said Traynor. “KIF5A helps to move key proteins and organelles – specialized parts of cells — up and down that axonal transport system, controlling the engines for the nervous system’s long-range cargo trucks. This mutation disrupts that system, causing the symptoms we see with ALS.”

Traynor cautioned that the discovery, while exciting, still leaves much more work to be done “While this is unlikely to be a very common genetic cause for ALS, it identifies important new directions to explore possible future gene therapies,” he said.

According to Traynor, next steps for the project include further study of the frequency and location of mutations within KIF5A and determining what cargos are being disrupted. He and his team hope this will help reveal what aspect of axonal transport is essential to maintain the cell.

Article :

Nicolas etal.; “Genome-wide Analyses Identify KIF5A as a Novel ALS Gene”; March 21, 2018; Neuron; DOI: 10.1016/j.neuron.2018.02.027 


Filed Under: Genomics/Proteomics

 

Related Articles Read More >

Spatial biology: Transforming our understanding of cellular environments
DNA double helix transforming into bar graphs, blue and gold, crisp focus on each strand, scientific finance theme --ar 5:4 --personalize 3kebfev --v 6.1 Job ID: f40101e1-2e2f-4f40-8d57-2144add82b53
Biotech in 2025: Precision medicine, smarter investments, and more emphasis on RWD in clinical trials
DNA helix 3D illustration. Mutations under microscope. Decoding genome. Virtual modeling of chemical processes. Hi-tech in medicine
Genomics in 2025: How $500 whole genome sequencing could democratize genomic data
A media release and Scientific Report image of Elizabeth Kellogg. - Camera Settings: ILCE-9M2, 12mm, ISO 1000, 1/80, f/3.2, Fri, 04-19-2024 at 10:10. v.12.01.23
St. Jude pioneers gene editing and structural biology to advance pediatric research
“ddd
EXPAND YOUR KNOWLEDGE AND STAY CONNECTED
Get the latest news and trends happening now in the drug discovery and development industry.

MEDTECH 100 INDEX

Medtech 100 logo
Market Summary > Current Price
The MedTech 100 is a financial index calculated using the BIG100 companies covered in Medical Design and Outsourcing.
Drug Discovery and Development
  • MassDevice
  • DeviceTalks
  • Medtech100 Index
  • Medical Design Sourcing
  • Medical Design & Outsourcing
  • Medical Tubing + Extrusion
  • Subscribe to our E-Newsletter
  • Contact Us
  • About Us
  • R&D World
  • Drug Delivery Business News
  • Pharmaceutical Processing World

Copyright © 2025 WTWH Media LLC. All Rights Reserved. The material on this site may not be reproduced, distributed, transmitted, cached or otherwise used, except with the prior written permission of WTWH Media
Privacy Policy | Advertising | About Us

Search Drug Discovery & Development

  • Home Drug Discovery and Development
  • Drug Discovery
  • Women in Pharma and Biotech
  • Oncology
  • Neurological Disease
  • Infectious Disease
  • Resources
    • Video features
    • Podcast
    • Webinars
  • Pharma 50
    • 2025 Pharma 50
    • 2024 Pharma 50
    • 2023 Pharma 50
    • 2022 Pharma 50
    • 2021 Pharma 50
  • Advertise
  • SUBSCRIBE