Drug Discovery and Development

  • Home Drug Discovery and Development
  • Drug Discovery
  • Women in Pharma
  • Oncology
  • Neurological Disease
  • Infectious Disease
  • R&D 100 Awards
  • Pharma 50
    • 2022 Pharma 50
    • 2021 Pharma 50

New Gene Discovered that Is Driving Drug Resistance

By The University of Salford | April 13, 2017

(Credit: Associated Press Photo)

Scientists in Salford, U.K., have identified a gene that is “revving the engine of cancer” against the world’s most common breast cancer drug.   

For reasons unknown, 50 percent of patients with breast cancer treated with the estrogen receptor-blocking drug tamoxifen eventually become resistant to the treatment.

In a paper published in the journal Oncotarget, biochemists tested a hypothesis that the mechanism of tamoxifen resistance is related to energy-generating mitochondria in cancer cells.

In doing so, they identified the protein NQ01 as the “trigger” that determines whether cells would survive tamoxifen.

Michael P. Lisanti, Professor of Translational Medicine in the Biomedical Research Centre at the University of Salford said: “In simple terms, the process of poisoning the cell (with tamoxifen) actually has the opposite effect, stimulating the cancer cells to respond by revving their engines in order to survive.”

Lisanti and collaborators Dr. Federica Sotgia and Dr. Marco Fiorillo tested their idea that cancer cells were fighting against tamoxifen by using their mitochondria — the “powerhouse of the cell” — that produces all their energy.

In the laboratory they directly compared sensitive cells with tamoxifen-resistant cancer cells, and demonstrated that higher mitochondrial power is what distinguishes a drug-sensitive cell from a resistant cell.

Then they used a combination of protein profiling, genetics and metabolism to identify which genes were necessary to confer tamoxifen-resistance. They observed that by adding just a single gene, NQ01, the cells would survive.

Finally, they used a chemical inhibitor of NQ01 (dicoumarol), which is a relative of warfarin, to successfully sensitize tamoxifen-resistant cells.

Lisanti concludes: “This is the first evidence that tamoxifen resistance is related to a specific metabolic behavior, ie. increased mitochondrial power, which is important  because this is not related to tamoxifen’s effect on the estrogen receptor.

“It also confirms that tamoxifen resistance is not a mechanism related to estrogen.”

Fiorillo suggests: “Now that we have identified the target, this will allow us and others to design new drugs to overcome tamoxifen resistance. There are already existing experimental drugs for targeting NQO1 and GCLC, for other reasons, so making inhibitors to target these enzymes is a practical reality.”

(Source: AlphaGalileo)


Filed Under: Drug Discovery

 

Related Articles Read More >

EpicentRx
A next-gen vaccine that could help end COVID-19 whack-a-mole 
Dotmatics
How Dotmatics aims to help reduce the drug discovery failure rate
Diversity
Making diversity in clinical research more than a talking point
psychedelic medicine discussed at SXSW
5 headwinds and 5 tailwinds for psychedelic medicine

Need Drug Discovery news in a minute?

We Deliver!
Drug Discovery & Development Enewsletters get you caught up on all the mission critical news you need. Sign up today.
Enews Signup
Drug Discovery and Development
  • MassDevice
  • DeviceTalks
  • Medical Design & Outsourcing
  • Medical Tubing + Extrusion
  • Medtech100 Index
  • Medical Design Sourcing
  • Subscribe to our Free E-Newsletter
  • Contact Us
  • About Us
  • Advertise With Us
  • R&D World
  • Drug Delivery Business News
  • Pharmaceutical Processing World

Copyright © 2022 WTWH Media LLC. All Rights Reserved. The material on this site may not be reproduced, distributed, transmitted, cached or otherwise used, except with the prior written permission of WTWH Media
Privacy Policy | Advertising | About Us

Search Drug Discovery & Development

  • Home Drug Discovery and Development
  • Drug Discovery
  • Women in Pharma
  • Oncology
  • Neurological Disease
  • Infectious Disease
  • R&D 100 Awards
  • Pharma 50
    • 2022 Pharma 50
    • 2021 Pharma 50