Drug Discovery and Development

  • Home Drug Discovery and Development
  • Drug Discovery
  • Genomics/Proteomics
  • Oncology
  • Neurological Disease
  • Infectious Disease
  • R&D 100 Awards
  • Pharma 50
    • 2022 Pharma 50
    • 2021 Pharma 50

New Approach Aims to Silence Cancer ‘Survival Genes’

By Drug Discovery Trends Editor | September 23, 2014

Silencing the SIRT1 gene: Cancer cells before and after treatment in vitro. Non-cancerous cells (not shown) are unaffected. (Source: University of York)Scientists at the University of York are working on a promising new approach for tackling colorectal cancer, the second most common cause of cancer-related death.
 
The new method works by silencing cancer “survival genes” and could potentially combat cancer through the selective killing of colorectal cancer cells without adverse effects on normal, non-cancer cells.
 
Funded by York’s Centre for Chronic Diseases and Disorders (C2D2), the project led by Professor Jo Milner from York’s Department of Biology involved preliminary studies to establish the suitability of an ex vivo model for the future development of anti-cancer therapies for colorectal cancer using a technique called RNA interference.
 
The new approach builds on ground-breaking research by Milner and her team at York more than a decade ago. This early work, funded by Yorkshire Cancer Research (YCR), used the newly-developed technique of RNA interference to successfully kill human cervical cancer cells grown in culture without causing damage to healthy cells.
 
“When a mammalian cell elects to die it does so with great precision and without harming its neighbors. This process of ‘programmed cell death’ enables the continuous replacement of aging cells and also the sculpting of tissues and neuronal pathways,” Milner explained. “However, when this normal process of programmed cell death fails the continued abnormal growth of affected cells can lead to cancer. Some cancers develop following infection with a virus, such as human papilloma virus which causes human cervical cancer. Here the virus expresses specific viral genes that disrupt normal cellular control mechanisms resulting in abnormal cell proliferation and survival.”
 
Milner added: “Using RNA interference (RNAi) we first identified the viral gene responsible for the continued survival of cervical cancer cells. Then we established the feasibility of RNAi-based therapeutics for the selective killing of human cervical cancer cells growing in vitro.”
 
Milner and her team next studied cells from other cancer types, including colorectal cancer and breast cancer. Such cancers develop when the cell’s internal control system fails due to damage to one or more of the regulatory genes.
 
“We discovered that other genes, belonging to a group called stress-response genes, acquire a new pro-survival function during the process of cancerous transformation. Importantly, this acquired cancer-specific survival function operates under normal, physiological conditions,” Milner said. “Silencing these cancer-specific survival genes by RNA interference causes the cancer cells to die while the survival of non-cancerous cells appears normal. This is in contrast to treating cancer by radiotherapy and/or genotoxic drugs- these agents cause genotoxic stress and damage both cancer and normal cells and tissues in the body, resulting in unwanted adverse side effects for the patient.”
 
For the work on colorectal cancer therapies to progress towards the clinic, the team has had to meet the challenge of modifying the agent siRNA. siRNA is the synthetic RNA molecule which is designed to silence a chosen gene by inducing RNA interference and selectively suppressing expression of that gene. However, siRNA is very unstable and is rapidly degraded when in contact with human tissues.
 
As reported in the journal Molecular Therapy, the team has now successfully met this challenge and converted the unstable siRNA molecule into a stable form without losing its ability and very high efficacy for targeted gene silencing. A novel siRNA/DNA has been shown to be resistant to degradation while retaining high efficacy and selectivity for target gene silencing when tested on human cancer cells grown in culture.
 
The next step will involve testing this novel therapeutic agent for cancer-specific cell killing using human tissue maintained ex vivo, using an experimental model which was validated in the course of the C2D2-funded research.
 
Professor Paul Kaye, director of C2D2, said: “Professor Milner’s team has now shown that ex vivo cultures of colorectal tumor material, derived from human patients, maintain cancer-related biochemistry over several days, and of sufficient time known to produce a killing effect with the novel siRNA/DNA in vitro. It is marvelous that C2D2 has been able to support this ground breaking research that has validated an ex vivo model that can be used to progress this novel therapeutic towards the clinic, and without the need for animal research.”
 
Date: September 23, 2014
Source: University of York
 

Filed Under: Drug Discovery

 

Related Articles Read More >

Takeda Pharmaceutical in the Drug Discovery & Development Pharma 50
Takeda’s Takhzyro fares well in pediatric hereditary angioedema study
Novartis in the Pharma 50
Novartis to cut up to 8,000 positions
Gilead Sciences in the Drug Discovery & Development Pharma 50
Gilead resubmits application to FDA for twice-yearly HIV drug lenacapavir
George Floyd mural
How the pandemic and George Floyd made clinical trial diversity a priority

MEDTECH 100 INDEX

Medtech 100 logo
Market Summary > Current Price
The MedTech 100 is a financial index calculated using the BIG100 companies covered in Medical Design and Outsourcing.

Need Drug Discovery news in a minute?

We Deliver!
Drug Discovery & Development Enewsletters get you caught up on all the mission critical news you need. Sign up today.
Enews Signup
Drug Discovery and Development
  • MASSDEVICE
  • DEVICETALKS
  • Medical Design & Outsourcing
  • MEDICAL TUBING + EXTRUSION
  • MEDTECH 100
  • Medical Design Sourcing
  • Subscribe to our Free E-Newsletter
  • Contact Us
  • About Us
  • Advertise With Us
  • R&D World
  • Drug Delivery Business News
  • Pharmaceutical Processing World

Copyright © 2022 WTWH Media LLC. All Rights Reserved. The material on this site may not be reproduced, distributed, transmitted, cached or otherwise used, except with the prior written permission of WTWH Media
Privacy Policy | Advertising | About Us

Search Drug Discovery & Development

  • Home Drug Discovery and Development
  • Drug Discovery
  • Genomics/Proteomics
  • Oncology
  • Neurological Disease
  • Infectious Disease
  • R&D 100 Awards
  • Pharma 50
    • 2022 Pharma 50
    • 2021 Pharma 50