Drug Discovery and Development

  • Home Drug Discovery and Development
  • Drug Discovery
  • Genomics/Proteomics
  • Oncology
  • Neurological Disease
  • Infectious Disease
  • Orphan Drugs
  • R&D 100 Awards

Natural Gene Therapy for Intractable Skin Disease Discovered

By Hokkaido University | May 17, 2019

A normal-looking skin area of patient with loricrin keratoderma (left). Histological features of the affected epidermis (center) and the normalized epidermis (right). Credit: Suzuki S. et al., Life Science Alliance, February 4, 2019

Pathogenic gene mutations causing a type of intractable skin disease can be eliminated from some parts of patients’ skin as they age, according to Hokkaido University researchers and their collaborators in Japan. This represents a form of natural gene therapy.

In general, there is no fundamental treatment method capable of curing diseases caused by gene abnormality because it is difficult to remove certain genetic mutations from all affected cells. Loricrin keratoderma (LK) is one such disease; caused by loricrin mutations, it is characterized by dry, thickened, scaly skin from birth. Only symptomatic treatments are available to alleviate the conditions, which cause difficulties in patients’ daily lives. Thus far, doctors have not known how to treat the ailment.

In a study published in Life Science Alliance, the research team, including Toshifumi Nomura and Shotaro Suzuki of Hokkaido University, observed the patients’ skin for an extended period. They discovered that LK patients had normal-looking skin areas dotted around their body. Tissue from those areas was examined for histology, and DNA extracted from both the epidermis and dermis were checked for loricrin mutations.

The study found skin areas that looked normal were in fact skin that had returned to normal and that, surprisingly, the mutant loricrin which patients were supposed to have from birth had disappeared. Detailed analyses of the DNA sequences revealed that the mutation had disappeared due to somatic recombination — a type of DNA recombination that causes exchange of DNA strands that contain similar sequences¬¬. Normal skin stayed in the same location for at least several years, so the finding suggests gene mutations are eliminated from stem cells that keep providing new cells in the epidermis.

The study also found that cells with normal loricrin have higher reproduction ability and are more likely to form colonies than cells with mutant loricrin. This survival advantage could be why the normal cells became noticeable on the patients’ skin.

“If we could elucidate the mechanism of frequent somatic recombination occurring in epidermal cells, and could find a way to artificially induce it, that could lead to the development of a new treatment method for loricrin keratoderma, and potentially other genetic diseases,” says Toshifumi Nomura.

Related Articles Read More >

FDA releases guidance to speed personalized drug development
Pigs
FDA OKs intentional genomic alteration in pigs — with potential therapeutic applications
Oxford Gene Technology
Oxford Gene Technology expands next-generation sequencing line
cleveland-clinic-disruptors-2021
The top 10 medical disruptors of 2021

DeviceTalks Tuesdays

DeviceTalks Tuesdays

MEDTECH 100 INDEX

Medtech 100 logo
Market Summary > Current Price
The MedTech 100 is a financial index calculated using the BIG100 companies covered in Medical Design and Outsourcing.

Need Drug Discovery news in a minute?

We Deliver!
Drug Discovery & Development Enewsletters get you caught up on all the mission critical news you need. Sign up today.
Enews Signup

R&D Twitter

Tweets by @RandDWorld
Drug Discovery and Development
  • Enews Signup
  • Contact Us
  • R&D World
  • Pharmaceutical Processing
  • Drug Delivery Business News

Copyright © 2021 WTWH Media LLC. All Rights Reserved. The material on this site may not be reproduced, distributed, transmitted, cached or otherwise used, except with the prior written permission of WTWH Media
Privacy Policy | Advertising | About Us

Search Drug Discovery

  • Home Drug Discovery and Development
  • Drug Discovery
  • Genomics/Proteomics
  • Oncology
  • Neurological Disease
  • Infectious Disease
  • Orphan Drugs
  • R&D 100 Awards