Drug Discovery and Development

  • Home Drug Discovery and Development
  • Drug Discovery
  • Women in Pharma and Biotech
  • Oncology
  • Neurological Disease
  • Infectious Disease
  • Resources
    • Video features
    • Podcast
    • Webinars
  • Pharma 50
    • 2025 Pharma 50
    • 2024 Pharma 50
    • 2023 Pharma 50
    • 2022 Pharma 50
    • 2021 Pharma 50
  • Advertise
  • SUBSCRIBE

Natural Brain Substance Blocks Weight Gain

By Drug Discovery Trends Editor | January 29, 2009

Mice with increased levels of a natural brain chemical don’t gain weight when fed a high-fat diet, researchers at UT Southwestern Medical Center have found.

The chemical, orexin, works by increasing the body’s sensitivity to the weight-loss hormone, leptin, the researchers report.

Finding a way to boost the orexin system may prove useful as a therapy against obesity, said Dr. Masashi Yanagisawa, professor of molecular genetics at UT Southwestern and senior author of the study.

‘Obese people are not deficient in leptin,’ Dr. Yanagisawa said. ‘They have tons of leptin floating around. The problem is that their brain isn’t very sensitive to it.’

Orexin, which Dr. Yanagisawa discovered about a decade ago, is involved in controlling appetite and sleep. He found that reduced levels of orexin lead to the sleep disorder narcolepsy in both rodents and humans.

Orexin can boost the appetite in the short term, but, paradoxically, a lack of orexin leads to obesity in the long run. ‘It’s been confusing,’ said Dr. Yanagisawa, an investigator with the Howard Hughes Medical Institute at UT Southwestern.

Part of the confusion comes about because orexin acts on two different molecules in the brain, OX1R and OX2R. In the current study, the researchers aimed to distinguish which action was involved in weight control.

The researchers increased the levels of orexin in mice, either through genetic engineering or by administering the hormone into the brain.

When these mice were fed a healthy diet, the increased levels of orexin made little difference in their weights compared to normal mice; however, when the mice were fed a high-fat diet, the high-orexin mice remained lean while the normal animals became obese. This difference was due to an increase in the rate of metabolism – high-orexin mice burned fuel up to 20 percent faster than normal mice.

The high-orexin mice had lower blood levels of leptin, implying that the leptin was more effective in controlling weight in these mice. In addition, when the researchers administered leptin to the high-orexin mice, the animals responded with a much greater loss of appetite and weight compared to normal mice given leptin.

The researchers also administered a substance that activates only OX2R to separate out orexin’s possible double action. The mice given this substance showed the same beneficial response to high-fat diets and leptin, confirming that OX2R controls the interaction.

These results clarify the action of orexin and point to OX2R as a potential route to help treat obesity, but any practical use is still far off, Dr. Yanagisawa said.

A primary hurdle to orexin-based drug development is a defense system in the body called the blood-brain barrier, which prevents many substances in the blood from penetrating into the brain. Because of this, orexin cannot reach the brain when it is given orally or as an intravenous or subcutaneous injection.

‘Fortunately, however, high-orexin mice show no sleep/wake disturbance or other serious side effects,’ Dr. Yanagisawa said.

‘This study suggests that if we can develop a compound that mimics the action of orexin on its receptor, we might be able to treat narcolepsy and other sleep disorders, as well as obesity,’ Dr. Yanagisawa said. ‘We have already screened out some such ‘orexin mimics.’ The next step is to do serious medicinal chemistry to make variations of these compounds to get them more potent and specific. If we could advance to early clinical trials in five years, I’d say we’d be lucky.

‘I hope that in the long run a suitable orexin mimic might help people be more mentally productive during the day, as well as be able to lose weight more easily.’

Release Date: January 28, 2009
Source: UT Southwestern Medical Center 


Filed Under: Genomics/Proteomics

 

Related Articles Read More >

Spatial biology: Transforming our understanding of cellular environments
DNA double helix transforming into bar graphs, blue and gold, crisp focus on each strand, scientific finance theme --ar 5:4 --personalize 3kebfev --v 6.1 Job ID: f40101e1-2e2f-4f40-8d57-2144add82b53
Biotech in 2025: Precision medicine, smarter investments, and more emphasis on RWD in clinical trials
DNA helix 3D illustration. Mutations under microscope. Decoding genome. Virtual modeling of chemical processes. Hi-tech in medicine
Genomics in 2025: How $500 whole genome sequencing could democratize genomic data
A media release and Scientific Report image of Elizabeth Kellogg. - Camera Settings: ILCE-9M2, 12mm, ISO 1000, 1/80, f/3.2, Fri, 04-19-2024 at 10:10. v.12.01.23
St. Jude pioneers gene editing and structural biology to advance pediatric research
“ddd
EXPAND YOUR KNOWLEDGE AND STAY CONNECTED
Get the latest news and trends happening now in the drug discovery and development industry.

MEDTECH 100 INDEX

Medtech 100 logo
Market Summary > Current Price
The MedTech 100 is a financial index calculated using the BIG100 companies covered in Medical Design and Outsourcing.
Drug Discovery and Development
  • MassDevice
  • DeviceTalks
  • Medtech100 Index
  • Medical Design Sourcing
  • Medical Design & Outsourcing
  • Medical Tubing + Extrusion
  • Subscribe to our E-Newsletter
  • Contact Us
  • About Us
  • R&D World
  • Drug Delivery Business News
  • Pharmaceutical Processing World

Copyright © 2025 WTWH Media LLC. All Rights Reserved. The material on this site may not be reproduced, distributed, transmitted, cached or otherwise used, except with the prior written permission of WTWH Media
Privacy Policy | Advertising | About Us

Search Drug Discovery & Development

  • Home Drug Discovery and Development
  • Drug Discovery
  • Women in Pharma and Biotech
  • Oncology
  • Neurological Disease
  • Infectious Disease
  • Resources
    • Video features
    • Podcast
    • Webinars
  • Pharma 50
    • 2025 Pharma 50
    • 2024 Pharma 50
    • 2023 Pharma 50
    • 2022 Pharma 50
    • 2021 Pharma 50
  • Advertise
  • SUBSCRIBE