Drug Discovery and Development

  • Home Drug Discovery and Development
  • Drug Discovery
  • Women in Pharma and Biotech
  • Oncology
  • Neurological Disease
  • Infectious Disease
  • Resources
    • Video features
    • Podcast
    • Webinars
  • Pharma 50
    • 2025 Pharma 50
    • 2024 Pharma 50
    • 2023 Pharma 50
    • 2022 Pharma 50
    • 2021 Pharma 50
  • Advertise
  • SUBSCRIBE

Loss of Protective Heart Failure Protein Causes High Blood Pressure

By Drug Discovery Trends Editor | May 5, 2008

Scientists at the Center for Translational Medicine at Thomas Jefferson University in Philadelphia have found that a protein that appears to have protective and perhaps healing effects for failing hearts also plays a similar role in high blood pressure. They found lower-than-normal levels of the protein S100A1 in cells that line blood vessel walls in animals with high blood pressure.   

When the researchers, led by Patrick Most, MD, assistant professor of Medicine at Jefferson Medical College and former postdoctoral fellow Sven Pleger, MD, experimentally lowered the amount of S100A1 protein in the animals’ blood vessels, they were able to dramatically increase blood pressure. The preliminary results identified a novel and rather unanticipated biological function of the protein and suggest that S100A1 could be a therapeutic target for blood pressure treatment. The team’s findings appear in the journal Circulation Research.

“S100A1 seems to be a major player in the regulation of blood pressure and vascular function,” says Dr. Most. “The mechanisms by which this works is by producing more nitric oxide (NO) in the endothelial cells that line the vessel walls. A lack of NO enables hypertension.”

According to Dr. Most, S100A1 is an alternative mechanism for increasing heart function. It directly regulates calcium circulation, which drives the contractions in the heart. Dr. Most’s laboratory has been working on S100A1’s role in disease hearts for more than a decade, and together with a group led by Walter Koch, Ph.D, director of the Center for Translational Medicine, they have proven that loss of the protein causes diseased hearts to fail and that the protein is a potential target for gene therapy for heart failure.

S100A1, part of a larger family of proteins called S100, is primarily found at high levels in muscle, particularly the heart. Falling levels of S100A1 are critical in the loss of heart-pumping strength after a heart attack and play an important role in the progression to heart failure. A previous study in 1989 showed that the protein was reduced by as much as 50 percent in patients with heart failure.

In the current work, Dr. Most and colleague Andrea Eckhart, PhD, associate professor of Medicine at Jefferson Medical College, and their team found in both laboratory experiments and in animal models that blood vessels that lack S100A1 cannot relax as well as normal vessels. “If the animal doesn’t have S100A1, it has hypertension,” he says. “The mechanism is based more or less on the availability of nitric oxide. It seems that S100A1 also regulates calcium cycling in the endothelial cell, and calcium is needed in the endothelial cell to stimulate NO production. The loss of S100A1 impairs the calcium mobilization of the endothelial cell – that’s the link between less calcium, less NO, hypertension and endothelial dysfunction.

Release date: May 5, 2008
Source: Jefferson University Hospitals 


Filed Under: Genomics/Proteomics

 

Related Articles Read More >

Spatial biology: Transforming our understanding of cellular environments
DNA double helix transforming into bar graphs, blue and gold, crisp focus on each strand, scientific finance theme --ar 5:4 --personalize 3kebfev --v 6.1 Job ID: f40101e1-2e2f-4f40-8d57-2144add82b53
Biotech in 2025: Precision medicine, smarter investments, and more emphasis on RWD in clinical trials
DNA helix 3D illustration. Mutations under microscope. Decoding genome. Virtual modeling of chemical processes. Hi-tech in medicine
Genomics in 2025: How $500 whole genome sequencing could democratize genomic data
A media release and Scientific Report image of Elizabeth Kellogg. - Camera Settings: ILCE-9M2, 12mm, ISO 1000, 1/80, f/3.2, Fri, 04-19-2024 at 10:10. v.12.01.23
St. Jude pioneers gene editing and structural biology to advance pediatric research
“ddd
EXPAND YOUR KNOWLEDGE AND STAY CONNECTED
Get the latest news and trends happening now in the drug discovery and development industry.

MEDTECH 100 INDEX

Medtech 100 logo
Market Summary > Current Price
The MedTech 100 is a financial index calculated using the BIG100 companies covered in Medical Design and Outsourcing.
Drug Discovery and Development
  • MassDevice
  • DeviceTalks
  • Medtech100 Index
  • Medical Design Sourcing
  • Medical Design & Outsourcing
  • Medical Tubing + Extrusion
  • Subscribe to our E-Newsletter
  • Contact Us
  • About Us
  • R&D World
  • Drug Delivery Business News
  • Pharmaceutical Processing World

Copyright © 2025 WTWH Media LLC. All Rights Reserved. The material on this site may not be reproduced, distributed, transmitted, cached or otherwise used, except with the prior written permission of WTWH Media
Privacy Policy | Advertising | About Us

Search Drug Discovery & Development

  • Home Drug Discovery and Development
  • Drug Discovery
  • Women in Pharma and Biotech
  • Oncology
  • Neurological Disease
  • Infectious Disease
  • Resources
    • Video features
    • Podcast
    • Webinars
  • Pharma 50
    • 2025 Pharma 50
    • 2024 Pharma 50
    • 2023 Pharma 50
    • 2022 Pharma 50
    • 2021 Pharma 50
  • Advertise
  • SUBSCRIBE