Drug Discovery and Development

  • Home Drug Discovery and Development
  • Drug Discovery
  • Women in Pharma and Biotech
  • Oncology
  • Neurological Disease
  • Infectious Disease
  • Resources
    • Video features
    • Podcast
    • Voices
    • Views
    • Webinars
  • Pharma 50
    • 2025 Pharma 50
    • 2024 Pharma 50
    • 2023 Pharma 50
    • 2022 Pharma 50
    • 2021 Pharma 50
  • Advertise
  • SUBSCRIBE

Large Protein Nanocages Could Improve Drug Design and Delivery

By Howard Hughes Medical Institute | July 22, 2016

Computational models of the 10 successful designs are shown via molecular surface representations (design names are shown above each model). Each design comprises a pairwise combination of pentameric (grey), trimeric (blue), or dimeric (orange) building blocks aligned along icosahedral fivefold, threefold, and twofold symmetry axes, respectively. All models are shown to scale relative to the 30 nanometer scale bar. Source: Jacob Bale, University of Washington

Using novel computational and biochemical approaches, scientists have accurately designed and built from scratch 10 large protein icosahedra–polyhedra with 20 faces–similar to viral capsids that carry viral DNA. The designed structures are made of two different engineered proteins, present in 60 copies each, which self-assemble into icosahedra. They have a wide variety of potential applications, from targeted drug delivery to the development of more effective vaccines, the researchers say.

The findings, reported on July 22, 2016 inScience, follow a report in Nature last month by the same team describing the creation of the first designed icosahedron made of 60 copies of a single protein subunit. The current paper describes the design and construction of 10 icosahedra from two different protein subunits.

“The remarkable thing is that the computational design model is really close to the actual structure,” said HHMI Investigator David Baker of the University of Washington Institute for Protein Design, who led the study. “These are definitely the largest structures that have been created using computational design methods … so it’s a real milestone for protein design, because we can design these really complicated structures from scratch on the computer and they come out exactly right.”

Graduate student Jacob Bale working with Baker and Neil King, an acting assistant professor at the Institute for Protein Design, used Rosetta, a protein-design computer program developed in Baker’s lab over many years, to optimize amino acid residues that form the interface between proteins to make them fit with each other. “You want to design proteins so that when they come together, the interactions cause the proteins to form an icosahedron,” explained Baker. Because the work is so computationally intensive, the researchers relied on a crowdsourcing platform called Rosetta@home, which allows members of the public to donate cycles of their idle computers to run jobs for computing protein structures.

Once the researchers had created designs that the computer predicted would form icosahedra, the next step was to test out the designs. Bale engineered synthetic genes that encoded the designed proteins and introduced those genes into bacteria. He purified the proteins from the bacteria and developed new screening methods to determine which ones were forming icosahedra.

Once the putative icosahedra were identified, the researchers needed to characterize the structures to verify whether they matched the predictions. Through the Visiting Scientist Program at HHMI’s Janelia Research Campus, Shane Gonen, a graduate student in Baker’s lab, came to his brother Tamir Gonen’s lab at Janelia to use the cryo-electron microscope (cryo-EM), and they were able to confirm that the designs came out very close to predictions from the computational models. “Any scientist from anywhere in the world, if they have a collaboration with someone at Janelia, can apply for a visitor project, and the scientist will be able to come here for up to a year and live on campus and do research at Janelia,” said Gonen. “The vast majority of my collaborators actually come in through the visitor program. It just makes things a lot easier,” he added.

The researchers envision that the icosahedra they designed could be used for many applications: to package a chemotherapy agent to deliver it to a specific organ, or to design more effective vaccines, which produce a stronger immune response if the immunogen is presented in a form that makes it look like a virus, Baker explained.

“Although viral capsids have been used for targeted drug delivery and as a vaccine platform, they didn’t evolve for that,” said Baker. “As we pursue applications, we can design protein structures specifically for that application, so you don’t get a lot of evolutionary baggage, of things evolving for one reason and then trying to adapt them for a new purpose,” he explained. In addition to pursuing applications, future work will focus on designing “more dynamic structures that undergo structural transitions in response to environmental changes,” he said.


Filed Under: Drug Discovery

 

Related Articles Read More >

Bayer’s Lynkuet approved by FDA for menopausal hot flashes
How stereo-correct data can de-risk AI-driven drug discovery
eConsent as the digital foundation for modern clinical trials 
Female Patient Being Reassured By Doctor In Hospital Room
Q&A: Thermo Fisher’s Luke Wilson on hitting 100% dose delivery with patient-centric supply
“ddd
EXPAND YOUR KNOWLEDGE AND STAY CONNECTED
Get the latest news and trends happening now in the drug discovery and development industry.

MEDTECH 100 INDEX

Medtech 100 logo
Market Summary > Current Price
The MedTech 100 is a financial index calculated using the BIG100 companies covered in Medical Design and Outsourcing.
Drug Discovery and Development
  • MassDevice
  • DeviceTalks
  • Medtech100 Index
  • Medical Design Sourcing
  • Medical Design & Outsourcing
  • Medical Tubing + Extrusion
  • Subscribe to our E-Newsletter
  • Contact Us
  • About Us
  • R&D World
  • Drug Delivery Business News
  • Pharmaceutical Processing World

Copyright © 2025 WTWH Media LLC. All Rights Reserved. The material on this site may not be reproduced, distributed, transmitted, cached or otherwise used, except with the prior written permission of WTWH Media
Privacy Policy | Advertising | About Us

Search Drug Discovery & Development

  • Home Drug Discovery and Development
  • Drug Discovery
  • Women in Pharma and Biotech
  • Oncology
  • Neurological Disease
  • Infectious Disease
  • Resources
    • Video features
    • Podcast
    • Voices
    • Views
    • Webinars
  • Pharma 50
    • 2025 Pharma 50
    • 2024 Pharma 50
    • 2023 Pharma 50
    • 2022 Pharma 50
    • 2021 Pharma 50
  • Advertise
  • SUBSCRIBE