Drug Discovery and Development

  • Home Drug Discovery and Development
  • Drug Discovery
  • Women in Pharma and Biotech
  • Oncology
  • Neurological Disease
  • Infectious Disease
  • Resources
    • Video features
    • Podcast
    • Voices
    • Views
    • Webinars
  • Pharma 50
    • 2025 Pharma 50
    • 2024 Pharma 50
    • 2023 Pharma 50
    • 2022 Pharma 50
    • 2021 Pharma 50
  • Advertise
  • SUBSCRIBE

Key Motor Proteins Orchestrates Chromosome Movements

By Drug Discovery Trends Editor | May 13, 2008

Cell division is essential to life, but the mechanism by which emerging daughter cells organize and divvy up their genetic endowments is little understood. In a new study, researchers at the University of Illinois and Columbia University report on how a key motor protein orchestrates chromosome movements at a critical stage of cell division. The study appeared in the Proceedings of the National Academy of Sciences.

Within the complex world of the cell, motor proteins function as a kind of postal service. These proteins carry cargo from one location to another in the cell, a job that requires precision, in both the location and the timing of delivery. They are fueled by a small molecule, adenosine tri-phosphate (ATP).

Some motor proteins are essential to mitosis—the process by which cell division occurs in higher organisms. During cell division it is important for chromosomes to line up at the middle of the parent cell allowing for their separation between the two daughter cells.

Motor proteins play a key role in the movement of chromosomes to and from the poles of the cell. Should any of these processes lose coordination, it could result in disease or cell death.

How chromosomes move during cell division is a question that is fundamental to biology and is of importance in understanding many diseases. University of Illinois physics professor Paul Selvin and his colleagues focused on a motor protein, centromeric protein E (CENP-E) that is known to be associated with chromosomes.

“The question is whether CENP-E acts like a transporter or like an anchor,” Selvin said.

“A transporter moves things around the cell, whereas an anchor sits someplace in the cell, holds onto something, and causes the thing to be held down,” Selvin said. “It turns out CENP-E is known to be an anchor, but is it also a transporter?”

Earlier studies had established a role for CENP-E in aligning paired chromosomes. This alignment is important for ensuring that one of each pair makes its way into a different daughter cell.

Release date: May 13, 2008
Source: University of Illinois at Urbana-Champaign 


Filed Under: Genomics/Proteomics

 

Related Articles Read More >

Columbia-CZ team develops 10.3M parameter model that outperforms 100M parameter rivals on cell type classification
Spatial biology: Transforming our understanding of cellular environments
DNA double helix transforming into bar graphs, blue and gold, crisp focus on each strand, scientific finance theme --ar 5:4 --personalize 3kebfev --v 6.1 Job ID: f40101e1-2e2f-4f40-8d57-2144add82b53
Biotech in 2025: Precision medicine, smarter investments, and more emphasis on RWD in clinical trials
DNA helix 3D illustration. Mutations under microscope. Decoding genome. Virtual modeling of chemical processes. Hi-tech in medicine
Genomics in 2025: How $500 whole genome sequencing could democratize genomic data
“ddd
EXPAND YOUR KNOWLEDGE AND STAY CONNECTED
Get the latest news and trends happening now in the drug discovery and development industry.

MEDTECH 100 INDEX

Medtech 100 logo
Market Summary > Current Price
The MedTech 100 is a financial index calculated using the BIG100 companies covered in Medical Design and Outsourcing.
Drug Discovery and Development
  • MassDevice
  • DeviceTalks
  • Medtech100 Index
  • Medical Design Sourcing
  • Medical Design & Outsourcing
  • Medical Tubing + Extrusion
  • Subscribe to our E-Newsletter
  • Contact Us
  • About Us
  • R&D World
  • Drug Delivery Business News
  • Pharmaceutical Processing World

Copyright © 2025 WTWH Media LLC. All Rights Reserved. The material on this site may not be reproduced, distributed, transmitted, cached or otherwise used, except with the prior written permission of WTWH Media
Privacy Policy | Advertising | About Us

Search Drug Discovery & Development

  • Home Drug Discovery and Development
  • Drug Discovery
  • Women in Pharma and Biotech
  • Oncology
  • Neurological Disease
  • Infectious Disease
  • Resources
    • Video features
    • Podcast
    • Voices
    • Views
    • Webinars
  • Pharma 50
    • 2025 Pharma 50
    • 2024 Pharma 50
    • 2023 Pharma 50
    • 2022 Pharma 50
    • 2021 Pharma 50
  • Advertise
  • SUBSCRIBE