Drug Discovery and Development

  • Home Drug Discovery and Development
  • Drug Discovery
  • Women in Pharma and Biotech
  • Oncology
  • Neurological Disease
  • Infectious Disease
  • Resources
    • Video features
    • Podcast
    • Webinars
  • Pharma 50
    • 2025 Pharma 50
    • 2024 Pharma 50
    • 2023 Pharma 50
    • 2022 Pharma 50
    • 2021 Pharma 50
  • Advertise
  • SUBSCRIBE

Ketamine Lifts Depression Via Byproduct of its Metabolism

By Drug Discovery Trends Editor | May 5, 2016

A team of NIH intramural scientists and grantees traced ketamine’s rapid antidepressant effects to activation of AMPA receptors by a byproduct of its chemical breakdown called (2R,6R)-HNK (above) – a different mechanism than had been previously assumed.NCATSA chemical byproduct, or metabolite, created as the body breaks down ketamine likely holds the secret to its rapid antidepressant action, National Institutes of Health (NIH) scientists and grantees have discovered.  This metabolite singularly reversed depression-like behaviors in mice without triggering any of the anesthetic, dissociative, or addictive side effects associated with ketamine.

“This discovery fundamentally changes our understanding of how this rapid antidepressant mechanism works and holds promise for development of more robust and safer treatments,” said Carlos Zarate, M.D. of the NIH’s National Institute of Mental Health (NIMH), a study co-author and a pioneer of research using ketamine to treat depression. “By using a team approach, researchers were able to reverse-engineer ketamine’s workings from the clinic to the lab to pinpoint what makes it so unique.”

NIMH grantee Todd Gould, M.D. (link is external), of the University of Maryland School of Medicine, in collaboration with Zarate and other colleagues, report on their findings May 4, 2016 in the journal Nature. The team also included researchers at the NIH’s National Center for Advancing Translational Sciences (NCATS) and National Institute on Aging (NIA), and the University of North Carolina.

“Now that we know that ketamine’s antidepressant actions in mice are due to a metabolite, not ketamine itself, the next steps are to confirm that it works similarly in humans, and determine if it can lead to improved therapeutics for patients,” explained Gould.

Clinical trials by Zarate and others have shown that ketamine can lift depression in hours, or even minutes — much faster than the most commonly used antidepressant medications now available, which often require weeks to take effect. Further, the antidepressant effects of a single dose can last for a week or longer. However, despite legitimate medical uses, ketamine also has dissociative, euphoric, and addictive properties, making it a potential drug of abuse and limiting its usefulness as a depression medication.

In hopes of finding leads to a more practical treatment, the research team sought to pinpoint the exact mechanism by which ketamine relieves depression. Ketamine belongs to a class of drugs that block cellular receptors for glutamate, the brain’s chief excitatory chemical messenger. Until now, the prevailing view was that ketamine produced its antidepressant effects by blocking N-methyl-D-aspartic acid (NMDA) glutamate receptors.

Source: NIH


Filed Under: Drug Discovery

 

Related Articles Read More >

Lokavant’s Spectrum v15 uses AI to cut trial-feasibility modeling from weeks to minutes
Prime time for peptide-based drug discovery 
Why smaller, simpler molecular glues are gaining attention in drug discovery
Glass vial, pipette and woman scientist in laboratory for medical study, research or experiment. Test tube, dropper and professional female person with chemical liquid for pharmaceutical innovation
Unlocking ‘bench-to-bedside’ discoveries requires better data sharing and collaboration
“ddd
EXPAND YOUR KNOWLEDGE AND STAY CONNECTED
Get the latest news and trends happening now in the drug discovery and development industry.

MEDTECH 100 INDEX

Medtech 100 logo
Market Summary > Current Price
The MedTech 100 is a financial index calculated using the BIG100 companies covered in Medical Design and Outsourcing.
Drug Discovery and Development
  • MassDevice
  • DeviceTalks
  • Medtech100 Index
  • Medical Design Sourcing
  • Medical Design & Outsourcing
  • Medical Tubing + Extrusion
  • Subscribe to our E-Newsletter
  • Contact Us
  • About Us
  • R&D World
  • Drug Delivery Business News
  • Pharmaceutical Processing World

Copyright © 2025 WTWH Media LLC. All Rights Reserved. The material on this site may not be reproduced, distributed, transmitted, cached or otherwise used, except with the prior written permission of WTWH Media
Privacy Policy | Advertising | About Us

Search Drug Discovery & Development

  • Home Drug Discovery and Development
  • Drug Discovery
  • Women in Pharma and Biotech
  • Oncology
  • Neurological Disease
  • Infectious Disease
  • Resources
    • Video features
    • Podcast
    • Webinars
  • Pharma 50
    • 2025 Pharma 50
    • 2024 Pharma 50
    • 2023 Pharma 50
    • 2022 Pharma 50
    • 2021 Pharma 50
  • Advertise
  • SUBSCRIBE