Drug Discovery and Development

  • Home Drug Discovery and Development
  • Drug Discovery
  • Women in Pharma and Biotech
  • Oncology
  • Neurological Disease
  • Infectious Disease
  • Resources
    • Video features
    • Podcast
    • Webinars
  • Pharma 50
    • 2025 Pharma 50
    • 2024 Pharma 50
    • 2023 Pharma 50
    • 2022 Pharma 50
    • 2021 Pharma 50
  • Advertise
  • SUBSCRIBE

Is tPA A Double-Edged Sword?

By Drug Discovery Trends Editor | January 23, 2009

Since the introduction of the clot-busting drug tPA more than a decade ago, evidence has been accumulating that tPA (tissue-type plasminogen activator) can be a double-edged sword for a brain affected by stroke. Although it remains the only FDA-approved treatment for acute stroke, tPA can also contribute to inflammation and brain cell damage.

Scientists at Emory University School of Medicine are testing strategies for blocking LRP1, a molecule that appears to transmit inflammation signals triggered by tPA. They have found that in mice, genetically removing LRP1 from certain brain cells called microglia softens tPA’s impact on the brain.

The results suggest that blocking tPA’s toxic effects could make it safer and allow doctors to use it more often on patients experiencing a stroke.

‘tPA is a protein released naturally by the body in response to a blood clot,’ says Manuel Yepes, MD, PhD, assistant professor of neurology at Emory University School of Medicine. ‘But it’s clearly not just lysing the clot.’

Doctors in community hospitals can often be reluctant to administer tPA to patients who appear to be having a stroke, Yepes says. One reason is that tPA has been shown to increase the risk of bleeding in the brain, he says.

Researchers have shown that tPA treatment increases the permeability of the blood-brain barrier, and that it can cross from the blood vessels into the brain tissue, generating inflammation. tPA targets cells called microglia, which are similar to white blood cells of the immune system, although they live in the brain.

‘Our strategy was to show that by blocking LRP1, you can prevent the inflammatory response to tPA,’ Yepes says. ‘This can be done either genetically, by deleting LRP1, or perhaps pharmacologically.’

Yepes and his colleagues are now testing a natural inhibitor of LRP1 called RAP in the laboratory. Co-treating or even pre-treating stroke patients with RAP might soften tPA’s effects.

Researchers had previously been unable to examine the effects of deleting LRP1, a protein involved in transporting cholesterol and other molecules around the brain, because mice completely lacking the gene die in the womb.

Yepes and his colleagues collaborated with Dudley Strickland, PhD, professor of surgery and physiology at University of Maryland School of Medicine, who provided mice deficient in LRP1 in macrophages (white blood cells) and microglia only.

The authors showed that the genetically altered mice have half the number of activated microglia in the brain after treatment with tPA. In addition, the volume of brain tissue damaged by a simulated stroke was cut in half in the genetically altered mice.

Release Date: January 23, 2009
Source: Emory University


Filed Under: Genomics/Proteomics

 

Related Articles Read More >

Spatial biology: Transforming our understanding of cellular environments
DNA double helix transforming into bar graphs, blue and gold, crisp focus on each strand, scientific finance theme --ar 5:4 --personalize 3kebfev --v 6.1 Job ID: f40101e1-2e2f-4f40-8d57-2144add82b53
Biotech in 2025: Precision medicine, smarter investments, and more emphasis on RWD in clinical trials
DNA helix 3D illustration. Mutations under microscope. Decoding genome. Virtual modeling of chemical processes. Hi-tech in medicine
Genomics in 2025: How $500 whole genome sequencing could democratize genomic data
A media release and Scientific Report image of Elizabeth Kellogg. - Camera Settings: ILCE-9M2, 12mm, ISO 1000, 1/80, f/3.2, Fri, 04-19-2024 at 10:10. v.12.01.23
St. Jude pioneers gene editing and structural biology to advance pediatric research
“ddd
EXPAND YOUR KNOWLEDGE AND STAY CONNECTED
Get the latest news and trends happening now in the drug discovery and development industry.

MEDTECH 100 INDEX

Medtech 100 logo
Market Summary > Current Price
The MedTech 100 is a financial index calculated using the BIG100 companies covered in Medical Design and Outsourcing.
Drug Discovery and Development
  • MassDevice
  • DeviceTalks
  • Medtech100 Index
  • Medical Design Sourcing
  • Medical Design & Outsourcing
  • Medical Tubing + Extrusion
  • Subscribe to our E-Newsletter
  • Contact Us
  • About Us
  • R&D World
  • Drug Delivery Business News
  • Pharmaceutical Processing World

Copyright © 2025 WTWH Media LLC. All Rights Reserved. The material on this site may not be reproduced, distributed, transmitted, cached or otherwise used, except with the prior written permission of WTWH Media
Privacy Policy | Advertising | About Us

Search Drug Discovery & Development

  • Home Drug Discovery and Development
  • Drug Discovery
  • Women in Pharma and Biotech
  • Oncology
  • Neurological Disease
  • Infectious Disease
  • Resources
    • Video features
    • Podcast
    • Webinars
  • Pharma 50
    • 2025 Pharma 50
    • 2024 Pharma 50
    • 2023 Pharma 50
    • 2022 Pharma 50
    • 2021 Pharma 50
  • Advertise
  • SUBSCRIBE