Drug Discovery and Development

  • Home Drug Discovery and Development
  • Drug Discovery
  • Women in Pharma and Biotech
  • Oncology
  • Neurological Disease
  • Infectious Disease
  • Resources
    • Video features
    • Podcast
    • Voices
    • Webinars
  • Pharma 50
    • 2025 Pharma 50
    • 2024 Pharma 50
    • 2023 Pharma 50
    • 2022 Pharma 50
    • 2021 Pharma 50
  • Advertise
  • SUBSCRIBE

Investigators Define Multi-step Pathway Allowing for Cell Survival and Death

By Drug Discovery Trends Editor | December 14, 2007

A new study by researchers at the University of Massachusetts Medical School (UMMS) gained new insights into autophagy—a cellular degradation process associated with a form of programmed cell death—by studying the salivary gland cells of the fruit fly.

Since its initial discovery in the 1960s, programmed cell death has been a primary focus of studies for investigators across a wide array of scientific disciplines. An essential mechanism in development and homeostasis, programmed cell death allows for the clean intracellular destruction of unnecessary or damaged cells. While apoptosis is the most understood type of programmed cell death, recently scientists have begun to take a closer look at autophagy— a highly regulated, catabolic process that essentially allows a cell to eat itself. Paradoxically, autophagy is not only a major mechanism by which a starving cell reallocates nutrients to ensure survival, scientists are now demonstrating that autophagy also provides cells that cannot undergo apoptosis with an alternate form of  self-destruction.

In “Growth arrest and autophagy are required for salivary gland cell degradation in Drosophila,” published in Cell, Eric Baehrecke, PhD, UMMS associate professor of Cancer Biology, and Deborah L. Berry, PhD, of Children’s National Medical Center, examined fly salivary glands, which contain all of the machinery required to dismantle and recycle their own cellular components and thus provide a genetic model system for elucidating the complex functions of autophagy. The paper describes the cellular components required for autophagic cell death and defines multiple pathways that cooperate in the clearance of cells during fly development. Further, their findings demonstrate a critical relationship between growth and this form of cell death.

Release date: December 14, 2007
Source: University of Massachusetts Medical School


Filed Under: Drug Discovery

 

Related Articles Read More >

EVEREST lead investigator on why Dupixent sets a new bar for treating coexisting CRSwNP and asthma
Sanders, King target DTC pharma ads but the industry worries more about threats to its $2B R&D model
Zoliflodacin wins FDA nod for treatment of gonorrhea
FDA approved ENFLONSIA for the prevention of RSV in Infants
“ddd
EXPAND YOUR KNOWLEDGE AND STAY CONNECTED
Get the latest news and trends happening now in the drug discovery and development industry.

MEDTECH 100 INDEX

Medtech 100 logo
Market Summary > Current Price
The MedTech 100 is a financial index calculated using the BIG100 companies covered in Medical Design and Outsourcing.
Drug Discovery and Development
  • MassDevice
  • DeviceTalks
  • Medtech100 Index
  • Medical Design Sourcing
  • Medical Design & Outsourcing
  • Medical Tubing + Extrusion
  • Subscribe to our E-Newsletter
  • Contact Us
  • About Us
  • R&D World
  • Drug Delivery Business News
  • Pharmaceutical Processing World

Copyright © 2025 WTWH Media LLC. All Rights Reserved. The material on this site may not be reproduced, distributed, transmitted, cached or otherwise used, except with the prior written permission of WTWH Media
Privacy Policy | Advertising | About Us

Search Drug Discovery & Development

  • Home Drug Discovery and Development
  • Drug Discovery
  • Women in Pharma and Biotech
  • Oncology
  • Neurological Disease
  • Infectious Disease
  • Resources
    • Video features
    • Podcast
    • Voices
    • Webinars
  • Pharma 50
    • 2025 Pharma 50
    • 2024 Pharma 50
    • 2023 Pharma 50
    • 2022 Pharma 50
    • 2021 Pharma 50
  • Advertise
  • SUBSCRIBE