Drug Discovery and Development

  • Home Drug Discovery and Development
  • Drug Discovery
  • Women in Pharma and Biotech
  • Oncology
  • Neurological Disease
  • Infectious Disease
  • Resources
    • Video features
    • Podcast
    • Voices
    • Webinars
  • Pharma 50
    • 2025 Pharma 50
    • 2024 Pharma 50
    • 2023 Pharma 50
    • 2022 Pharma 50
    • 2021 Pharma 50
  • Advertise
  • SUBSCRIBE

Hydrogel May Help Heal Diabetic Ulcers

By Rice University | April 13, 2018

Rice University graduate student Nicole Carrejo holds a vial of hydrogel invented at Rice that has proven useful for healing injuries and may be able to accelerate the healing of diabetic ulcers, according to scientists. Credit: Jeff Fitlow/Rice University

A hydrogel invented at Rice University that is adept at helping the body heal may also be particularly good at treating wounds related to diabetes.

The Rice lab of chemist and bioengineer Jeffrey Hartgerink reported this week that tests on diabetic animal models showed the injectable hydrogel significantly accelerated wound healing compared with another hydrogel often used in clinics.

The study appears this week in the American Chemical Society journal ACS Biomaterials Science and Engineering.

The multidomain peptide (MDP) hydrogel known by its amino acid sequence – K2(SL)6K2 – has in a recent study proven useful for the timed release of immunotherapy drugs. It has also been shown to encourage healing all by itself.

That quality may be useful for people with diabetes mellitus who often develop chronic wounds in their lower extremities that take longer to heal than normal wounds.

“This is particularly exciting because the study shows our material has an effect that’s positive and better than things that are already out there,” Hartgerink said. “This has been a long time coming.”

He said the typical treatment for a diabetic foot ulcer has not changed much over the last century.

“The current gold standard of treatment is to debride the wound, which means to remove necrotic tissue. The wound is washed, bandaged and patients are told to keep pressure off the foot,” said Nicole Carrejo, a Rice graduate student and the paper’s lead author. “Various treatments and materials may be tried, but oftentimes, everything fails, which can lead to amputation.”

The researchers reported that Rice’s MDP hydrogel significantly accelerated the healing of wounds in genetically diabetic rodents. Treatment led to wound closure in 14 days, the formation of thick granulation tissue, including dense growth of blood vessels and nerve cells, and the regeneration of hair follicles.

They compared their results with a control group treated with a commercial hydrogel that required twice as long to reach the same degree of wound closure. “Unlike our MDP hydrogel, the control hydrogel does not get infiltrated by cells,” Carrejo said. “Although the control results in the healing of wounds, we believe cellular infiltration of our MDP helps lead to the acceleration of wound healing.”

Hartgerink hopes to move the hydrogel toward clinical trials as a material rather than a drug to ease the federal approval process. “That would make it much more practical to do a clinical trial,” he said. “These preclinical experiments have been exciting enough to warrant that thought process.”


Filed Under: Drug Discovery

 

Related Articles Read More >

Sanders, King target DTC pharma ads but the industry worries more about threats to its $2B R&D model
Zoliflodacin wins FDA nod for treatment of gonorrhea
FDA approved ENFLONSIA for the prevention of RSV in Infants
First clinical study results of Dupixent for atopic dermatitis in patients with darker skin tones 
“ddd
EXPAND YOUR KNOWLEDGE AND STAY CONNECTED
Get the latest news and trends happening now in the drug discovery and development industry.

MEDTECH 100 INDEX

Medtech 100 logo
Market Summary > Current Price
The MedTech 100 is a financial index calculated using the BIG100 companies covered in Medical Design and Outsourcing.
Drug Discovery and Development
  • MassDevice
  • DeviceTalks
  • Medtech100 Index
  • Medical Design Sourcing
  • Medical Design & Outsourcing
  • Medical Tubing + Extrusion
  • Subscribe to our E-Newsletter
  • Contact Us
  • About Us
  • R&D World
  • Drug Delivery Business News
  • Pharmaceutical Processing World

Copyright © 2025 WTWH Media LLC. All Rights Reserved. The material on this site may not be reproduced, distributed, transmitted, cached or otherwise used, except with the prior written permission of WTWH Media
Privacy Policy | Advertising | About Us

Search Drug Discovery & Development

  • Home Drug Discovery and Development
  • Drug Discovery
  • Women in Pharma and Biotech
  • Oncology
  • Neurological Disease
  • Infectious Disease
  • Resources
    • Video features
    • Podcast
    • Voices
    • Webinars
  • Pharma 50
    • 2025 Pharma 50
    • 2024 Pharma 50
    • 2023 Pharma 50
    • 2022 Pharma 50
    • 2021 Pharma 50
  • Advertise
  • SUBSCRIBE