Drug Discovery and Development

  • Home Drug Discovery and Development
  • Drug Discovery
  • Women in Pharma and Biotech
  • Oncology
  • Neurological Disease
  • Infectious Disease
  • Resources
    • Video features
    • Podcast
    • Webinars
  • Pharma 50
    • 2025 Pharma 50
    • 2024 Pharma 50
    • 2023 Pharma 50
    • 2022 Pharma 50
    • 2021 Pharma 50
  • Advertise
  • SUBSCRIBE

How Proteins Control the Process When Bacteria Multiply

By Drug Discovery Trends Editor | April 14, 2008

Researchers have solved important puzzles concerning how certain proteins guide the reproduction of bacteria, discoveries that could lead to a new type of antibiotics.

In a recent study published in the journal Current Biology, the scientists reported how a belt-like structure called a Z ring, which pinches a rod-shaped bacterium to produce two offspring, can be disabled by a protein called MinC. By exploiting this vulnerability, the researchers said, pharmaceutical companies may find a way to fight infections that no longer respond to older medications.

“The potential medical applications of our discovery are significant,” said Alex Dajkovic, lead author of the paper. “Because the molecules involved in cell division are very similar in almost all bacteria, the process we uncovered provides a new target for the people who make antibiotics. This is extremely important because antibiotic resistance is on the rise, and many preventable deaths, especially in the developing world, are caused by bacterial infections.”

The researchers focused on the rod-shaped bacterium E. coli, commonly found in the human digestive tract, which serves as a model organism for study of basic bacterial processes. When these single-celled microbes want to multiply, a structure called the Z ring forms, then begins to tighten like a rubber band around each bacterium’s midsection. The Z ring helps to pinch the rod-shaped body into two microbial sausages that finally split apart to form two cells.

For about 20 years, researchers have known about the Z ring but have not understood precisely how it operated and why it always formed in the middle of rod-shaped cells. The main components of Z rings are filaments of a protein molecule called FtsZ.

The Johns Hopkins University-led researchers reported that the changing of FtsZ threads from a liquid-like form to a more solid structure inside the cell is important for the formation of the Z ring. The team found that FtsZ threads weave themselves into a framework or scaffold that can hold all of the other molecules involved in the cell division process. The FtsZ filments are able to weave this tapestry, the researchers learned, because they tend to attract one another and interact along the length of each thread.

The team also discovered that MinC, another protein inside the bacterial cell, disrupts this process by liquefying the structure that is used to form a Z ring. “MinC blocks the attraction between FtsZ filaments along their lengths, and it also makes the filaments more fragile,” said Dajkovic. “This has the effect of shearing the weavings in the tapestry of the Z ring, which causes the whole structure to fall apart.”

MinC is most prevalent on the outer ends of the rod-shaped bacterial cell, the researchers said, and this explains why the Z ring always forms and splits the cell in the middle, where it is less likely to encounter its protein foe. The team members said this discovery also presents a promising opportunity: a new drug that mimics the effects of MinC could play havoc with the bacterial reproductive process and thereby put an end to an infection.

Dajkovic helped make the discoveries as a postdoctoral fellow in the lab of Denis Wirtz, a professor of chemical and biomolecular engineering in Johns Hopkins’ Whiting School of Engineering. Dajkovic is now a researcher at Institut Curie in Paris.

Release date: April 9, 2008
Source: Johns Hopkins University


Filed Under: Genomics/Proteomics

 

Related Articles Read More >

Spatial biology: Transforming our understanding of cellular environments
DNA double helix transforming into bar graphs, blue and gold, crisp focus on each strand, scientific finance theme --ar 5:4 --personalize 3kebfev --v 6.1 Job ID: f40101e1-2e2f-4f40-8d57-2144add82b53
Biotech in 2025: Precision medicine, smarter investments, and more emphasis on RWD in clinical trials
DNA helix 3D illustration. Mutations under microscope. Decoding genome. Virtual modeling of chemical processes. Hi-tech in medicine
Genomics in 2025: How $500 whole genome sequencing could democratize genomic data
A media release and Scientific Report image of Elizabeth Kellogg. - Camera Settings: ILCE-9M2, 12mm, ISO 1000, 1/80, f/3.2, Fri, 04-19-2024 at 10:10. v.12.01.23
St. Jude pioneers gene editing and structural biology to advance pediatric research
“ddd
EXPAND YOUR KNOWLEDGE AND STAY CONNECTED
Get the latest news and trends happening now in the drug discovery and development industry.

MEDTECH 100 INDEX

Medtech 100 logo
Market Summary > Current Price
The MedTech 100 is a financial index calculated using the BIG100 companies covered in Medical Design and Outsourcing.
Drug Discovery and Development
  • MassDevice
  • DeviceTalks
  • Medtech100 Index
  • Medical Design Sourcing
  • Medical Design & Outsourcing
  • Medical Tubing + Extrusion
  • Subscribe to our E-Newsletter
  • Contact Us
  • About Us
  • R&D World
  • Drug Delivery Business News
  • Pharmaceutical Processing World

Copyright © 2025 WTWH Media LLC. All Rights Reserved. The material on this site may not be reproduced, distributed, transmitted, cached or otherwise used, except with the prior written permission of WTWH Media
Privacy Policy | Advertising | About Us

Search Drug Discovery & Development

  • Home Drug Discovery and Development
  • Drug Discovery
  • Women in Pharma and Biotech
  • Oncology
  • Neurological Disease
  • Infectious Disease
  • Resources
    • Video features
    • Podcast
    • Webinars
  • Pharma 50
    • 2025 Pharma 50
    • 2024 Pharma 50
    • 2023 Pharma 50
    • 2022 Pharma 50
    • 2021 Pharma 50
  • Advertise
  • SUBSCRIBE