Drug Discovery and Development

  • Home Drug Discovery and Development
  • Drug Discovery
  • Women in Pharma and Biotech
  • Oncology
  • Neurological Disease
  • Infectious Disease
  • Resources
    • Video features
    • Podcast
    • Voices
    • Views
    • Webinars
  • Pharma 50
    • 2025 Pharma 50
    • 2024 Pharma 50
    • 2023 Pharma 50
    • 2022 Pharma 50
    • 2021 Pharma 50
  • Advertise
  • SUBSCRIBE

Highly Lethal Viruses Hijack Cellular Defenses Against Cancer

By Mohash University | August 7, 2018

Henipaviruses are among the deadliest viruses known to man and have no effective treatments. The viruses include Hendra, lethal to humans and horses, and the Nipah virus, a serious threat in East and Southeast Asia. They are on the World Health Organization Blueprint list of priority diseases needing urgent research and development action.

Now Monash University’s Biomedicine Discovery Institute (BDI) researchers have identified a new mechanism used by Henipaviruses in infection, and potential new targets for antivirals to treat them. Their findings may also apply to other dangerous viruses.

The research was published in Nature Communications.

A collaboration of scientists, led by Monash BDI’s Dr Gregory Moseley, found that Henipaviruses hijack a mechanism used by cells to counter DNA damage and prevent harmful mutations, important in diseases such as cancer.

Moseley said it was already known that the viruses send a particular protein into a key part of a cell’s nucleus called the nucleolus, but it wasn’t known why it did this.

He said the researchers showed that this protein interacted with a cell protein that is an important part of the DNA-damage response machinery, called ‘Treacle.’ This inhibited Treacle function, which appears to enhance henipavirus production.

(Treacle is, incidentally, involved in a craniofacial disorder called Treacher Collins syndrome, aired in the popular US movie Wonder in 2017.)

“What the virus seems to be doing is imitating part of the DNA damage response,” Moseley said.

“It is using a mechanism your cells have to protect you against things like ageing and mutations that lead to cancer. This appears to make the cell a better place for the virus to prosper,” he said.

According to Moseley, it is possible that blocking the virus from doing this may lead to the development of new anti-viral therapies.

Both Hendra and Nipah, which spread from bats to other animals and humans, emerged in the 1990s; Hendra in an outbreak in Brisbane in 1994 and Nipah in Malaysia in 1998. The viruses, which share outcomes including inflammation of the brain and severe respiratory symptoms, have since caused multiple outbreaks of disease. Nipah has killed several hundred people, including at least 17 people in the Indian state of Kerala in June.

“Nipah is not so important in Australia but it’s the one people are concerned about internationally,” Dr Moseley said.

“Like Ebola, if you get a really big outbreak and it’s not containable, it could be disastrous,” he said.

He said the study’s findings add insights into how viruses behave more generally.

“We identified a new way that viruses change the cell, by using the very same machinery that the cell normally uses to protect itself from diseases like cancer,” he said.

“This seems to be heading towards exciting possibilities about what viruses might be doing,” joint first author, Dr Stephen Rawlinson said.

“We are now trying to work out exactly how changing the DNA damage response through Treacle is useful to this and other dangerous viruses,” he said.

Ph.D. student Tianyue Zhao was the other first co-author.

The multidisciplinary collaboration working on the paper included scientists from Monash University’s Department of Microbiology, physical chemists using a super-resolution microscope in the Monash University School of Chemistry, the CSIRO AAHL high biocontainment facility, and the University of Melbourne.

The research was supported by the Australian Research Council and the Australian National Health and Medical Research Council.

SOURCE: Monash University


Filed Under: Oncology

 

Related Articles Read More >

New treatment paradigms in oncology: Highlights from the ASCO 2025 annual meeting
Korean team reports all-in-one cancer nanomedicine in pre-clinical studies
As some biotechs cut, Genmab unveils striking new site near Princeton
OS Therapies announces favorable FDA feedback on external control arm strategy for osteosarcoma drug
“ddd
EXPAND YOUR KNOWLEDGE AND STAY CONNECTED
Get the latest news and trends happening now in the drug discovery and development industry.

MEDTECH 100 INDEX

Medtech 100 logo
Market Summary > Current Price
The MedTech 100 is a financial index calculated using the BIG100 companies covered in Medical Design and Outsourcing.
Drug Discovery and Development
  • MassDevice
  • DeviceTalks
  • Medtech100 Index
  • Medical Design Sourcing
  • Medical Design & Outsourcing
  • Medical Tubing + Extrusion
  • Subscribe to our E-Newsletter
  • Contact Us
  • About Us
  • R&D World
  • Drug Delivery Business News
  • Pharmaceutical Processing World

Copyright © 2025 WTWH Media LLC. All Rights Reserved. The material on this site may not be reproduced, distributed, transmitted, cached or otherwise used, except with the prior written permission of WTWH Media
Privacy Policy | Advertising | About Us

Search Drug Discovery & Development

  • Home Drug Discovery and Development
  • Drug Discovery
  • Women in Pharma and Biotech
  • Oncology
  • Neurological Disease
  • Infectious Disease
  • Resources
    • Video features
    • Podcast
    • Voices
    • Views
    • Webinars
  • Pharma 50
    • 2025 Pharma 50
    • 2024 Pharma 50
    • 2023 Pharma 50
    • 2022 Pharma 50
    • 2021 Pharma 50
  • Advertise
  • SUBSCRIBE