Drug Discovery and Development

  • Home Drug Discovery and Development
  • Drug Discovery
  • Genomics/Proteomics
  • Oncology
  • Neurological Disease
  • Infectious Disease
  • R&D 100 Awards
  • Pharma 50
    • 2022 Pharma 50
    • 2021 Pharma 50

Heart Attack Drug Reduces Tissue Damage, Minimizes Bleeding Risk

By Drug Discovery Trends Editor | August 13, 2014

An investigational drug studied in animals significantly reduced damage to heart muscle from a heart attack and minimized the risk of bleeding during follow-up treatments, according to a study by scientists at Washington University School of Medicine in St. Louis.
 
“This medication, known as APT102, has the potential to change the paradigm for how heart attack patients initially are treated,” said senior author Dana Abendschein, associate professor of medicine and of cell biology and physiology at Washington University. “This also may be a better way to treat strokes caused by or associated with a blood clot.”
 
The study, which was funded by a National Institutes of Health (NIH) Small Business Innovation Research Grant and by APT Therapeutics Inc., the developer of APT102, is available online in Science Translational Medicine. 
 
Standard heart attack treatment often causes heart tissue damage. Once the blood clot that causes a heart attack is removed from an artery, molecules from dead and dying cells mix with blood rushing back through the artery. One of these molecules, adenosine triphosphate (ATP), is inflammatory; another, adenosine diphosphate (ADP), causes more clotting.
 
“ATP and ADP have different roles, but they both lead to more heart damage as they flood through the reopened artery after a heart attack,” said Abendschein.
 
The experimental drug APT102 is a genetically engineered version of the human protein apyrase, which transforms ATP and ADP into a benign molecule, adenosine monophosphate. Another enzyme changes this molecule into adenosine, which is beneficial for the heart. 
 
“Adenosine opens the blood vessels, increases blood flow and also has a protective effect on the lining of the vessels,” said Abendschein. “It takes the bad products away and produces a good byproduct that’s protective.”
 
The scientists treated 21 dogs for the study. After the clots that caused their heart attacks were dissolved using medication, eight received the standard post heart-attack drug clopidogrel, a blood thinner; seven were given low doses of APT102; and six were given high doses of APT102.
 
The researchers found that treatment with APT102 significantly reduced the amount of irreversible heart muscle damage.
 
“That’s a huge benefit because the majority of patients who have a lot of heart muscle damage go on to have heart failure,” Abendschein said.
 
By breaking down the clotting factor ADP, treatment with APT102 also eliminated the return of the clots, which can lead to further heart damage. 
 
“Virtually every agent that’s being used in patients now to prevent clot formation blocks the blood clotting agents known as platelets, and that creates a risk of bleeding,” Abendschein said. “This is not true of APT102.”
 
Other anticlotting agents have to be digested and converted into their active form in the liver, but APT102 can be injected directly into a vein, where it works immediately.
 
“When it comes to heart attack treatment, the saying is ‘time is muscle’— the longer you delay treatment, the more irreversible damage the heart will suffer,” Abendschein said. “APT102 may help us save critical time by letting treatment start right away.”
 
Abendschein and his team at Washington University have worked with APT Therapeutics and researchers at Harvard and Cornell over the past 10 years to develop the data published in Science Translational Medicine. They hope to start clinical trials of the drug in people within the next year.
 
Date: August 12, 2014
Source: WUSTL

Filed Under: Drug Discovery

 

Related Articles Read More >

Takeda Pharmaceutical in the Drug Discovery & Development Pharma 50
Takeda’s Takhzyro fares well in pediatric hereditary angioedema study
Novartis in the Pharma 50
Novartis to cut up to 8,000 positions
Gilead Sciences in the Drug Discovery & Development Pharma 50
Gilead resubmits application to FDA for twice-yearly HIV drug lenacapavir
George Floyd mural
How the pandemic and George Floyd made clinical trial diversity a priority

MEDTECH 100 INDEX

Medtech 100 logo
Market Summary > Current Price
The MedTech 100 is a financial index calculated using the BIG100 companies covered in Medical Design and Outsourcing.

Need Drug Discovery news in a minute?

We Deliver!
Drug Discovery & Development Enewsletters get you caught up on all the mission critical news you need. Sign up today.
Enews Signup
Drug Discovery and Development
  • MASSDEVICE
  • DEVICETALKS
  • Medical Design & Outsourcing
  • MEDICAL TUBING + EXTRUSION
  • MEDTECH 100
  • Medical Design Sourcing
  • Subscribe to our Free E-Newsletter
  • Contact Us
  • About Us
  • Advertise With Us
  • R&D World
  • Drug Delivery Business News
  • Pharmaceutical Processing World

Copyright © 2022 WTWH Media LLC. All Rights Reserved. The material on this site may not be reproduced, distributed, transmitted, cached or otherwise used, except with the prior written permission of WTWH Media
Privacy Policy | Advertising | About Us

Search Drug Discovery & Development

  • Home Drug Discovery and Development
  • Drug Discovery
  • Genomics/Proteomics
  • Oncology
  • Neurological Disease
  • Infectious Disease
  • R&D 100 Awards
  • Pharma 50
    • 2022 Pharma 50
    • 2021 Pharma 50