Drug Discovery and Development

  • Home Drug Discovery and Development
  • Drug Discovery
  • Women in Pharma and Biotech
  • Oncology
  • Neurological Disease
  • Infectious Disease
  • Resources
    • Video features
    • Podcast
    • Voices
    • Webinars
  • Pharma 50
    • 2025 Pharma 50
    • 2024 Pharma 50
    • 2023 Pharma 50
    • 2022 Pharma 50
    • 2021 Pharma 50
  • Advertise
  • SUBSCRIBE

Gut Microbiome May Affect Some Anti-Diabetes Drugs

By Wake Forest Baptist Medical Center | December 11, 2018

Why do orally-administered drugs for diabetes work for some people but not others?

According to researchers at Wake Forest School of Medicine, bacteria that make up the gut microbiome may be the culprit.

In a review of more than 100 current published studies in humans and rodents, the School of Medicine team examined how gut bacteria either enhanced or inhibited a drug’s effectiveness. The review is published in the Dec.11 edition of the journal EBioMedicine.

“For example, certain drugs work fine when given intravenously and go directly to the circulation, but when they are taken orally and pass through the gut, they don’t work,” said Hariom Yadav, Ph.D., assistant professor of molecular medicine at the School of Medicine, a part of Wake Forest Baptist Medical Center.

“Conversely, metformin, a commonly used anti-diabetes drug, works best when given orally but does not work when given through an IV.”

The review examined interactions between the most commonly prescribed anti-diabetic drugs with the microbiome. Before being absorbed into the bloodstream, many orally-administered drugs are processed by intestinal microbial enzymes. As a result, the gut microbiome influences the metabolism of the drugs, thereby affecting patients’ responses, Yadav said.

Type-2 diabetes, a disease characterized by carbohydrate and fat metabolism abnormalities, has recently become a global pandemic. One main function of gut microbiota is to metabolize non-digestive carbohydrates and regulate a person’s metabolism.

“Our review showed that the metabolic capacity of a patient’s microbiome could influence the absorption and function of these drugs by making them pharmacologically active, inactive or even toxic,” he said. “We believe that differences in an individual’s microbiome help explain why drugs will show a 90 or 50 percent optimum efficacy, but never 100 percent.”

The researchers concluded that modulation of the gut microbiome by drugs may represent a target to improve, modify or reverse the effectiveness of current medications for type-2 diabetes.

“This field is only a decade old, and the possibility of developing treatments derived from bacteria related to or involved in specific diseases is tantalizing,” Yadav said.


Filed Under: Drug Discovery

 

Related Articles Read More >

EVEREST lead investigator on why Dupixent sets a new bar for treating coexisting CRSwNP and asthma
Sanders, King target DTC pharma ads but the industry worries more about threats to its $2B R&D model
Zoliflodacin wins FDA nod for treatment of gonorrhea
FDA approved ENFLONSIA for the prevention of RSV in Infants
“ddd
EXPAND YOUR KNOWLEDGE AND STAY CONNECTED
Get the latest news and trends happening now in the drug discovery and development industry.

MEDTECH 100 INDEX

Medtech 100 logo
Market Summary > Current Price
The MedTech 100 is a financial index calculated using the BIG100 companies covered in Medical Design and Outsourcing.
Drug Discovery and Development
  • MassDevice
  • DeviceTalks
  • Medtech100 Index
  • Medical Design Sourcing
  • Medical Design & Outsourcing
  • Medical Tubing + Extrusion
  • Subscribe to our E-Newsletter
  • Contact Us
  • About Us
  • R&D World
  • Drug Delivery Business News
  • Pharmaceutical Processing World

Copyright © 2025 WTWH Media LLC. All Rights Reserved. The material on this site may not be reproduced, distributed, transmitted, cached or otherwise used, except with the prior written permission of WTWH Media
Privacy Policy | Advertising | About Us

Search Drug Discovery & Development

  • Home Drug Discovery and Development
  • Drug Discovery
  • Women in Pharma and Biotech
  • Oncology
  • Neurological Disease
  • Infectious Disease
  • Resources
    • Video features
    • Podcast
    • Voices
    • Webinars
  • Pharma 50
    • 2025 Pharma 50
    • 2024 Pharma 50
    • 2023 Pharma 50
    • 2022 Pharma 50
    • 2021 Pharma 50
  • Advertise
  • SUBSCRIBE