Drug Discovery and Development

  • Home Drug Discovery and Development
  • Drug Discovery
  • Women in Pharma and Biotech
  • Oncology
  • Neurological Disease
  • Infectious Disease
  • Resources
    • Video features
    • Podcast
    • Voices
    • Views
    • Webinars
  • Pharma 50
    • 2025 Pharma 50
    • 2024 Pharma 50
    • 2023 Pharma 50
    • 2022 Pharma 50
    • 2021 Pharma 50
  • Advertise
  • SUBSCRIBE

GI Tract Bacteria Help Decrease Stroke in Mice

By Drug Discovery Trends Editor | March 29, 2016

Immune cells (green) assemble in the outer coverings of a mouse's brain, called the meninges, protecting it from a stroke's full force. Gut bacteria modified the immune' cells behavior to elicit that protective response. Credit: Corinne BenakisCertain types of bacteria in the gut can leverage the immune system to decrease the severity of stroke, according to new research from Weill Cornell Medicine. This finding can help mitigate stroke—which is the second leading cause of death worldwide.
 
In the study, published March 28 in Nature Medicine, mice received a combination of antibiotics. Two weeks later, the researcher team—which included collaborators at Memorial Sloan Kettering Cancer Center—induced the most common type of stroke, called ischemic stroke, in which an obstructed blood vessel prevents blood from reaching the brain. Mice treated with antibiotics experienced a stroke that was about 60 percent smaller than rodents that did not receive the medication. The microbial environment in the gut directed the immune cells there to protect the brain, the investigators said, shielding it from the stroke’s full force.
 
“Our experiment shows a new relationship between the brain and the intestine,” said Dr. Josef Anrather, the Finbar and Marianne Kenny Research Scholar in Neurology and an associate professor of neuroscience in the Feil Family Brain and Mind Research Institute at Weill Cornell Medicine. “The intestinal microbiota shape stroke outcome, which will impact how the medical community views stroke and defines stroke risk.”
 
The findings suggest that modifying the microbiotic makeup of the gut can become an innovative method to prevent stroke. This could be especially useful to high-risk patients, like those undergoing cardiac surgery or those who have multiple obstructed blood vessels in the brain.
 
Further investigation is needed to understand exactly which bacterial components elicited their protective message. However, the researchers do know that the bacteria did not interact with the brain chemically, but rather influenced neural survival by modifying the behavior of immune cells. Immune cells from the gut made their way to the outer coverings of the brain, called the meninges, where they organized and directed a response to the stroke.
 
“One of the most surprising findings was that the immune system made strokes smaller by orchestrating the response from outside the brain, like a conductor who doesn’t play an instrument himself but instructs the others, which ultimately creates music,” said Dr. Costantino Iadecola, director of the Feil Family Brain and Mind Research Institute and the Anne Parrish Titzell Professor of Neurology at Weill Cornell Medicine.
 
The newfound connection between the gut and the brain holds promising implications for preventing stroke in the future, which the investigators say might be achieved by changing dietary habits in patients or “at risk” individuals.
 
“Dietary intervention is much easier to accomplish than drug use, and it could reach a broad base,” Dr. Anrather said. “This is a little far off from the current study—it’s music of the future. But diet has the biggest effect of composition of microbiota, and once beneficial and deleterious species are identified, we can address them with dietary intervention.”
 
Source: Weill Cornell Medical College

Filed Under: Drug Discovery

 

Related Articles Read More >

Korean team reports all-in-one cancer nanomedicine in pre-clinical studies
Nektar’s Phase 2b atopic dermatitis win triggers 1,746% analyst target surge, but legal tussle with ex-partner Lilly could complicate path forward
Dupixent approved to treat bullous pemphigoid
EVEREST lead investigator on why Dupixent sets a new bar for treating coexisting CRSwNP and asthma
“ddd
EXPAND YOUR KNOWLEDGE AND STAY CONNECTED
Get the latest news and trends happening now in the drug discovery and development industry.

MEDTECH 100 INDEX

Medtech 100 logo
Market Summary > Current Price
The MedTech 100 is a financial index calculated using the BIG100 companies covered in Medical Design and Outsourcing.
Drug Discovery and Development
  • MassDevice
  • DeviceTalks
  • Medtech100 Index
  • Medical Design Sourcing
  • Medical Design & Outsourcing
  • Medical Tubing + Extrusion
  • Subscribe to our E-Newsletter
  • Contact Us
  • About Us
  • R&D World
  • Drug Delivery Business News
  • Pharmaceutical Processing World

Copyright © 2025 WTWH Media LLC. All Rights Reserved. The material on this site may not be reproduced, distributed, transmitted, cached or otherwise used, except with the prior written permission of WTWH Media
Privacy Policy | Advertising | About Us

Search Drug Discovery & Development

  • Home Drug Discovery and Development
  • Drug Discovery
  • Women in Pharma and Biotech
  • Oncology
  • Neurological Disease
  • Infectious Disease
  • Resources
    • Video features
    • Podcast
    • Voices
    • Views
    • Webinars
  • Pharma 50
    • 2025 Pharma 50
    • 2024 Pharma 50
    • 2023 Pharma 50
    • 2022 Pharma 50
    • 2021 Pharma 50
  • Advertise
  • SUBSCRIBE