Drug Discovery and Development

  • Home Drug Discovery and Development
  • Drug Discovery
  • Women in Pharma and Biotech
  • Oncology
  • Neurological Disease
  • Infectious Disease
  • Resources
    • Video features
    • Podcast
    • Webinars
  • Pharma 50
    • 2025 Pharma 50
    • 2024 Pharma 50
    • 2023 Pharma 50
    • 2022 Pharma 50
    • 2021 Pharma 50
  • Advertise
  • SUBSCRIBE

Genomic Medicine May One Day Revolutionize Cardiovascular Care

By American Heart Association | May 29, 2018

A new scientific statement from the American Heart Association summarizes the state-of-the-science of genomic medicine — the study of the health effects of the molecular interactions of a person’s unique genes — for studying cardiovascular traits and disorders and for therapeutic screening.

“The promise of genomic medicine is to be able to use a patient’s specific genetic material to make a personalized forecast of their risk for heart disease, and if they develop disease, predict its course and determine the particular medications that are more likely to help with their disease,” said Kiran Musunuru, M.D., Ph.D., M.P.H., chair of the writing committee for the statement and an associate professor of cardiovascular medicine and genetics at the Perelman School of Medicine at the University of Pennsylvania in Philadelphia.

“Over the next decade, as we learn about cardiovascular disease at the molecular level, the hope is that we can develop therapies that will take advantage of this knowledge and be able to either treat or potentially cure disease,” Musunuru said.

DNA and RNA are two types of molecules found in most living organisms. DNA contains genetic information that is “translated” by means of RNA into proteins and metabolites, the tiny components that form cells and which play many other critical roles in the body. While genes, which are made up of DNA, carry traits inherited from your ancestors and are relatively stable during your lifetime, their “translation” can be altered by environmental factors, such as tobacco smoke, diet and exercise, for example.

Genomic medicine looks at all the types of molecular variation, from the DNA and RNA to the microorganisms in the human gut that seem to play an increasingly important role in maintaining health, and it seeks to find associations between patterns in these data and health outcomes.

An example of genomic medicine that is currently available to doctors is a noninvasive blood test for heart transplant patients, which measures the levels of 11 different RNA molecules to determine whether the patient’s immune system is rejecting the transplant. Traditionally, physicians biopsy cells from the patient’s heart on a weekly or biweekly basis by inserting a catheter into the heart to extract cells to monitor the transplanted organ for signs of rejection. While biopsies are considered relatively safe, there are risks, costs and discomfort for the patient.

“The hope is that with genomic medicine, there will be hundreds of examples of noninvasive tests like this that doctors can do to better forecast and better manage disease,” Musunuru said.

Researchers similarly hope that induced pluripotent stem cells (iPSCs) — stem cells that are grown from mature cells in the body, such as skin or blood, and can be converted into any type of cell — can provide clinicians with a noninvasive method to learn more about a person’s risk of cardiovascular disease and test potential treatments before they are given to a patient.

For example, doctors could use iPSCs to grow millions of a patient’s heart cells in the laboratory and use these cells to identify the best course of treatment to benefit the patient.

The use of iPSCs is still in early testing and not yet available to patients, but the preliminary results are promising, Musunuru said.

“With induced pluripotent stem cells, we will be able to determine upfront which medications are going to work better and get a sense of a medication’s potential side effects,” Musunuru said. “I am confident we will reach the point where we can start incorporating these kinds of cells into actual patient care.”

The statement is published in the American Heart Association journal Circulation: Genomic and Precision Medicine, where Musunuru serves as editor-in-chief.


Filed Under: Genomics/Proteomics

 

Related Articles Read More >

Spatial biology: Transforming our understanding of cellular environments
DNA double helix transforming into bar graphs, blue and gold, crisp focus on each strand, scientific finance theme --ar 5:4 --personalize 3kebfev --v 6.1 Job ID: f40101e1-2e2f-4f40-8d57-2144add82b53
Biotech in 2025: Precision medicine, smarter investments, and more emphasis on RWD in clinical trials
DNA helix 3D illustration. Mutations under microscope. Decoding genome. Virtual modeling of chemical processes. Hi-tech in medicine
Genomics in 2025: How $500 whole genome sequencing could democratize genomic data
A media release and Scientific Report image of Elizabeth Kellogg. - Camera Settings: ILCE-9M2, 12mm, ISO 1000, 1/80, f/3.2, Fri, 04-19-2024 at 10:10. v.12.01.23
St. Jude pioneers gene editing and structural biology to advance pediatric research
“ddd
EXPAND YOUR KNOWLEDGE AND STAY CONNECTED
Get the latest news and trends happening now in the drug discovery and development industry.

MEDTECH 100 INDEX

Medtech 100 logo
Market Summary > Current Price
The MedTech 100 is a financial index calculated using the BIG100 companies covered in Medical Design and Outsourcing.
Drug Discovery and Development
  • MassDevice
  • DeviceTalks
  • Medtech100 Index
  • Medical Design Sourcing
  • Medical Design & Outsourcing
  • Medical Tubing + Extrusion
  • Subscribe to our E-Newsletter
  • Contact Us
  • About Us
  • R&D World
  • Drug Delivery Business News
  • Pharmaceutical Processing World

Copyright © 2025 WTWH Media LLC. All Rights Reserved. The material on this site may not be reproduced, distributed, transmitted, cached or otherwise used, except with the prior written permission of WTWH Media
Privacy Policy | Advertising | About Us

Search Drug Discovery & Development

  • Home Drug Discovery and Development
  • Drug Discovery
  • Women in Pharma and Biotech
  • Oncology
  • Neurological Disease
  • Infectious Disease
  • Resources
    • Video features
    • Podcast
    • Webinars
  • Pharma 50
    • 2025 Pharma 50
    • 2024 Pharma 50
    • 2023 Pharma 50
    • 2022 Pharma 50
    • 2021 Pharma 50
  • Advertise
  • SUBSCRIBE