Drug Discovery and Development

  • Home Drug Discovery and Development
  • Drug Discovery
  • Women in Pharma and Biotech
  • Oncology
  • Neurological Disease
  • Infectious Disease
  • Resources
    • Video features
    • Podcast
    • Voices
    • Webinars
  • Pharma 50
    • 2025 Pharma 50
    • 2024 Pharma 50
    • 2023 Pharma 50
    • 2022 Pharma 50
    • 2021 Pharma 50
  • Advertise
  • SUBSCRIBE

Genetic Markers Provide Better Brain Cancer Classification

By Drug Discovery Trends Editor | June 11, 2015

Highly magnified view of brain tumor. Oligodendroglioma of the brain. Brain glioma.A team of scientists from UC San Francisco and Mayo Clinic has shown that using just three molecular markers will help clinicians classify gliomas – the most common type of malignant brain tumors – more accurately than current methods.
 
In a study published online June 10 by The New England Journal of Medicine, the researchers report that, based on the presence or absence of each marker, 95 percent of gliomas fall into one of five distinct groups, which vary in terms of median survival times and other characteristics.
 
Currently, malignant gliomas are classified based on the appearance of biopsy samples under the microscope, and their grade, or degree of aggressiveness, with grade II being the least aggressive and grade IV the most. 
 
“Unfortunately, classifying a tumor only by appearance and grade has not provided sufficient information about the way the tumor is likely to behave, how it will respond to treatment or the patient’s likely survival time,” said co-senior author Margaret R. Wrensch, PhD, UCSF professor of neurological surgery and epidemiology and biostatistics and the Stanley D. Lewis and Virginia S. Lewis Endowed Chair in Brain Tumor Research. “These markers will potentially allow us to predict the course of gliomas more accurately, treat them more effectively and identify more clearly what causes them in the first place.”
 
The three markers are a mutation in the region that promotes expression of the gene TERT, which expresses telomerase, an enzyme that helps keep cancer cells alive by protecting structures called telomeres; a mutation in the genes IDH1 or IDH2, referred to collectively as IDH mutation; and a combined mutation that deletes parts of chromosome 1 and chromosome 19.
 
The study authors analyzed genetic and clinical data from 1,087 malignant glioma patients and 11,590 healthy controls from Mayo Clinic, UCSF and The Cancer Genome Atlas, a program of the National Cancer Institute.
 
The scientists found that among grade II and III tumors, 29 percent were “triple positive,” showing all three markers. Patients with these tumors had a median survival time of 13.1 years. Five percent had both TERT and IDH mutations, and had a median survival time similar to triple positive tumors. Forty-five percent had IDH mutation only, and a median survival time of 8.9 years. Seven percent of tumors were triple negative, with none of the mutations, and had a median survival time of 6.2 years. The 10 percent of tumors that only had the TERT mutation were associated with the shortest median survival time – 1.9 years.
 
Wrensch suggested that once these or similar molecular markers are accepted by clinicians as part of the classification system, “it may make a great deal of difference in treatment approach for individual patients.”
 
She said that under the current system, “someone with a grade III glioma, for example, may not have been treated as aggressively as someone with a grade IV. But now, if you determine that it’s a TERT-mutated-only tumor, there is more confidence that it will behave more like a grade IV tumor and could be treated more aggressively.” In contrast, said Wrensch, “a grade III tumor that only has an IDH mutation might be treated less aggressively. Glioma treatments can be very toxic, so it’s important to know how aggressive treatments need to be.”
 
The researchers found that among patients with grade IV tumors, age at diagnosis was a more important predictor of survival than molecular subgroup, with younger patients having a better chance of surviving longer than older patients. “We don’t know why that is yet,” said Wrensch. “It might have something to do with the immune system or with telomere maintenance, but we are studying these questions. This study provides a new foundation.”
 
Source: UCSF

Filed Under: Genomics/Proteomics

 

Related Articles Read More >

Spatial biology: Transforming our understanding of cellular environments
DNA double helix transforming into bar graphs, blue and gold, crisp focus on each strand, scientific finance theme --ar 5:4 --personalize 3kebfev --v 6.1 Job ID: f40101e1-2e2f-4f40-8d57-2144add82b53
Biotech in 2025: Precision medicine, smarter investments, and more emphasis on RWD in clinical trials
DNA helix 3D illustration. Mutations under microscope. Decoding genome. Virtual modeling of chemical processes. Hi-tech in medicine
Genomics in 2025: How $500 whole genome sequencing could democratize genomic data
A media release and Scientific Report image of Elizabeth Kellogg. - Camera Settings: ILCE-9M2, 12mm, ISO 1000, 1/80, f/3.2, Fri, 04-19-2024 at 10:10. v.12.01.23
St. Jude pioneers gene editing and structural biology to advance pediatric research
“ddd
EXPAND YOUR KNOWLEDGE AND STAY CONNECTED
Get the latest news and trends happening now in the drug discovery and development industry.

MEDTECH 100 INDEX

Medtech 100 logo
Market Summary > Current Price
The MedTech 100 is a financial index calculated using the BIG100 companies covered in Medical Design and Outsourcing.
Drug Discovery and Development
  • MassDevice
  • DeviceTalks
  • Medtech100 Index
  • Medical Design Sourcing
  • Medical Design & Outsourcing
  • Medical Tubing + Extrusion
  • Subscribe to our E-Newsletter
  • Contact Us
  • About Us
  • R&D World
  • Drug Delivery Business News
  • Pharmaceutical Processing World

Copyright © 2025 WTWH Media LLC. All Rights Reserved. The material on this site may not be reproduced, distributed, transmitted, cached or otherwise used, except with the prior written permission of WTWH Media
Privacy Policy | Advertising | About Us

Search Drug Discovery & Development

  • Home Drug Discovery and Development
  • Drug Discovery
  • Women in Pharma and Biotech
  • Oncology
  • Neurological Disease
  • Infectious Disease
  • Resources
    • Video features
    • Podcast
    • Voices
    • Webinars
  • Pharma 50
    • 2025 Pharma 50
    • 2024 Pharma 50
    • 2023 Pharma 50
    • 2022 Pharma 50
    • 2021 Pharma 50
  • Advertise
  • SUBSCRIBE