Drug Discovery and Development

  • Home Drug Discovery and Development
  • Drug Discovery
  • Women in Pharma and Biotech
  • Oncology
  • Neurological Disease
  • Infectious Disease
  • Resources
    • Video features
    • Podcast
    • Webinars
  • Pharma 50
    • 2025 Pharma 50
    • 2024 Pharma 50
    • 2023 Pharma 50
    • 2022 Pharma 50
    • 2021 Pharma 50
  • Advertise
  • SUBSCRIBE

‘Edited’ Plant-based Toxin Possesses Anti-tumor Characteristics

By Shinshu University | November 16, 2018

Researchers at Shinshu University in Japan have discovered that editing the chemical properties of fusicoccins, a kind of toxic organic compound produced by fungus to blight plants, can transform them into chemicals with anti-tumor properties in cells.

The results of the study are published in Chemistry – A European Journal in September of 2018.

While fusicoccins are known to be involved in several activities in the mammalian cell, their exact mechanisms have not been well understood. In plants, fusicoccins structurally bind to a specific type of protein, called 14-3-3 proteins. In mammals, the same 14-3-3 proteins are responsible for regulating several cellular processes including cell growth and death, differentiation and aging.

In this context, the authors specifically looked at the effect of a model fusicoccin on the binding between 14-3-3 proteins and their partner molecules in a process of forming larger functional complexes. The researchers have demonstrated that a key chemical change in the structure of a fusicoccin not only affects the binding behavior between a 14-3-3 protein and its partner molecule during complex formation (also referred to as protein-protein interaction, PPI), but this change also turned the fusicoccin into a toxic substance with the ability to destroy cells, the latter being of particular relevance in cancer cells.

“What is most intriguing to us is that the simple structural change of the fusicoccin, which otherwise does not possess any toxicity in human cells, can lead to anti-cancer agents,” says Junko Ohkanda, corresponding author of the research paper and Professor at the Institute of Agriculture, Shinshu University. “Our study suggests that the compound works as a stabilizer for protein-protein interactions. Only few examples of this are known so far.”

The authors first synthesized two model fusicoccins, one with a critical hydroxyl group, or a region that contains a hydrogen molecule that is bound to an oxygen molecule, and one without a hydroxyl group. This was done via a series of chemical reactions. In order to be able to observe a fusicoccin’s effect on the protein-protein interactions, the researchers used fluorescence labelling. That allowed them to differentiate when a protein bound to a specific kind of synthetic fusicoccin and to understand protein structural effects of the presence or absence of the hydroxyl group.

Even though compounds that regulate interactions between proteins have emerged as new promising drug targets in the post-genome era and have received much attention over the last two decades, developing a synthetic molecule that has that function remains challenging. “We are hoping to be able to develop a new clinically relevant anti-cancer agent based on fusicoccins, which selectively control protein-protein interactions that are critical for cell survival,” says Professor Ohkanda.

According Ohkanda, the research team believes that “fusicoccins provide a new molecular basis for development of both antitumor drugs and the PPI-inducers, which are highly desirable for further understanding of cellular biology.” In their future research, the authors aim to focus on shedding light on the mechanisms of action. As such, they are already focusing on identification of the cellular targets.


Filed Under: Oncology

 

Related Articles Read More >

AP Biosciences charts course for safer CD137 bispecifics with its T-cube platform
Cellares and UW-Madison partner to automate manufacturing for novel solid tumor CAR-T
Why smaller, simpler molecular glues are gaining attention in drug discovery
Technology background. Big data concept. Binary computer code. Vector illustration.
COTA Healthcare announces AI milestone in real-world oncology data
“ddd
EXPAND YOUR KNOWLEDGE AND STAY CONNECTED
Get the latest news and trends happening now in the drug discovery and development industry.

MEDTECH 100 INDEX

Medtech 100 logo
Market Summary > Current Price
The MedTech 100 is a financial index calculated using the BIG100 companies covered in Medical Design and Outsourcing.
Drug Discovery and Development
  • MassDevice
  • DeviceTalks
  • Medtech100 Index
  • Medical Design Sourcing
  • Medical Design & Outsourcing
  • Medical Tubing + Extrusion
  • Subscribe to our E-Newsletter
  • Contact Us
  • About Us
  • R&D World
  • Drug Delivery Business News
  • Pharmaceutical Processing World

Copyright © 2025 WTWH Media LLC. All Rights Reserved. The material on this site may not be reproduced, distributed, transmitted, cached or otherwise used, except with the prior written permission of WTWH Media
Privacy Policy | Advertising | About Us

Search Drug Discovery & Development

  • Home Drug Discovery and Development
  • Drug Discovery
  • Women in Pharma and Biotech
  • Oncology
  • Neurological Disease
  • Infectious Disease
  • Resources
    • Video features
    • Podcast
    • Webinars
  • Pharma 50
    • 2025 Pharma 50
    • 2024 Pharma 50
    • 2023 Pharma 50
    • 2022 Pharma 50
    • 2021 Pharma 50
  • Advertise
  • SUBSCRIBE