Drug Discovery and Development

  • Home Drug Discovery and Development
  • Drug Discovery
  • Women in Pharma and Biotech
  • Oncology
  • Neurological Disease
  • Infectious Disease
  • Resources
    • Video features
    • Podcast
    • Webinars
  • Pharma 50
    • 2025 Pharma 50
    • 2024 Pharma 50
    • 2023 Pharma 50
    • 2022 Pharma 50
    • 2021 Pharma 50
  • Advertise
  • SUBSCRIBE

Drug Suppresses Spread of Breast Cancer Caused by Stem-Like Cells

By UCSD | December 15, 2017

A rare-stem like tumor cell, which plays a critical role in the spread of breast cancer, is identified with immunostaining for the β3 integrin subunit (blue) and transcription factor Slug (brown).

Rare stem-like tumor cells play a critical role in the spread of breast cancer, but a vulnerability in the pathway that powers them offers a strategy to target these cells using existing drugs before metastatic disease occurs, report University of California San Diego School of Medicine and Moores Cancer Center researchers.

In the findings, published in the Journal of Clinical Investigation on December 11, researchers reveal that co-expression of cell surface receptor integrin αvβ3 and transcription factor Slug — a master regulator of a cell’s ability to self-renew and differentiate — identifies rare stem-like cells in patient-derived tumor samples that are associated with metastasis. This co-expression occurs in up to 20 percent of primary breast cancers; independent of subtype.

“Stem-like cells work early during the spread of cancer cells, before metastasis,” said Jay S. Desgrosellier, PhD, senior author on the paper and assistant professor in the Department of Pathology at UC San Diego School of Medicine. “These are the cells that remain and grow after treatment and are responsible for tumor progression. If we are going to make a difference in the number of people who die of breast cancer, we need to stop metastasis and we think we have a way to do it.”

Using tumor samples from the Women’s Healthy Eating and Living clinical trial, researchers identified stem-like tumor cells as being characterized by low levels of the molecule p53 upregulated modulator of apoptosis (PUMA). The αvβ3/Src/Slug signaling pathway suppresses PUMA expression — which is critical for tumor progression. Researchers found that genetically disrupting this pathway, or using the FDA-approved Src kinase inhibitor dasatinib, increases PUMA levels and decreases tumor progression and metastasis in mice by up to fivefold.

Increasing levels of PUMA only affected stem-like cells that were starting to spread and not the growth of primary tumors. The kinase inhibitor was originally used to target pre-existing metastatic disease but failed to reverse its growth. In the study, the authors suggest that using Src kinase inhibitors may be more effectively used as adjuvant therapies to block αvβ3 signaling and prevent disease spread.

“We are introducing a potential new therapeutic approach that is particularly useful in preventing new metastatic disease from forming,” said Desgrosellier. “The inhibitors should be given when cancer cells have not metastasized or during early metastasis, when cells are still circulating. Disseminated cells are more sensitive to PUMA expression because they are already stressed. The cells in primary tumors are already established and are not affected by the inhibitors.”

In prior studies, Desgrosellier and team found that αvβ3 expression acts as a switch during early pregnancy to activate normal mammary stem cells as the body remodels to prepare for a baby. In late pregnancy, αvβ3 expression is inactivated, returning stem cells to a dormant state. This led researchers to investigate αvβ3’s role in breast cancer.

This research was done primarily in patient-derived cell lines. Desgrosellier said the team will follow up with mouse models containing tumor fragments from patients to better reflect the diversity of cell types present in human disease. These studies will investigate whether Src kinase inhibitors are best used in the adjuvant setting post-surgery or after chemotherapy to prevent the formation of local and distant disease recurrence.


Filed Under: Drug Discovery

 

Related Articles Read More >

Lokavant’s Spectrum v15 uses AI to cut trial-feasibility modeling from weeks to minutes
Prime time for peptide-based drug discovery 
Why smaller, simpler molecular glues are gaining attention in drug discovery
Glass vial, pipette and woman scientist in laboratory for medical study, research or experiment. Test tube, dropper and professional female person with chemical liquid for pharmaceutical innovation
Unlocking ‘bench-to-bedside’ discoveries requires better data sharing and collaboration
“ddd
EXPAND YOUR KNOWLEDGE AND STAY CONNECTED
Get the latest news and trends happening now in the drug discovery and development industry.

MEDTECH 100 INDEX

Medtech 100 logo
Market Summary > Current Price
The MedTech 100 is a financial index calculated using the BIG100 companies covered in Medical Design and Outsourcing.
Drug Discovery and Development
  • MassDevice
  • DeviceTalks
  • Medtech100 Index
  • Medical Design Sourcing
  • Medical Design & Outsourcing
  • Medical Tubing + Extrusion
  • Subscribe to our E-Newsletter
  • Contact Us
  • About Us
  • R&D World
  • Drug Delivery Business News
  • Pharmaceutical Processing World

Copyright © 2025 WTWH Media LLC. All Rights Reserved. The material on this site may not be reproduced, distributed, transmitted, cached or otherwise used, except with the prior written permission of WTWH Media
Privacy Policy | Advertising | About Us

Search Drug Discovery & Development

  • Home Drug Discovery and Development
  • Drug Discovery
  • Women in Pharma and Biotech
  • Oncology
  • Neurological Disease
  • Infectious Disease
  • Resources
    • Video features
    • Podcast
    • Webinars
  • Pharma 50
    • 2025 Pharma 50
    • 2024 Pharma 50
    • 2023 Pharma 50
    • 2022 Pharma 50
    • 2021 Pharma 50
  • Advertise
  • SUBSCRIBE