Drug Discovery and Development

  • Home Drug Discovery and Development
  • Drug Discovery
  • Women in Pharma and Biotech
  • Oncology
  • Neurological Disease
  • Infectious Disease
  • Resources
    • Video features
    • Podcast
    • Webinars
  • Pharma 50
    • 2025 Pharma 50
    • 2024 Pharma 50
    • 2023 Pharma 50
    • 2022 Pharma 50
    • 2021 Pharma 50
  • Advertise
  • SUBSCRIBE

Drug Short-Circuits Cancer Signaling

By Sanford Burnham Prebys Medical Discovery Institute | August 7, 2017

Researchers at Sanford Burnham Prebys Medical Discovery Institute (SBP) have published a study in Nature Communications shedding new light on how K-80003 (TX803), an anti-cancer agent discovered at the Institute, prevents activation of the PI3K pathway, resulting in inhibition of cancer cell growth. Because the PI3K pathway is common to many cancers, K-80003 could have broad therapeutic applications. Tarrex Biopharma, Inc. has licensed the compound and announced they will soon begin Phase 1 clinical trials at the Dana Farber Cancer Center for patients with colorectal cancer.

“K-80003 binds specifically to a truncated form of the retinoid X receptor-alpha (tRXRα) protein that promotes tumors,” says Xaio-kun Zhang, Ph.D., adjunct professor and senior author of the paper. “When it binds tRXRα, it freezes the protein into an inactive (tetrameric) configuration that prevents it from stimulating the PI3K pathway.

“A major goal of this study was to dig deeper and find out why this compound is so effective, and appears to have so few side effects,” adds Zhang. “We wanted to visualize how tRXRα and K-80003 physically interact–at atomic resolution–in a way that makes this such a promising cancer drug.”

Working with the lab of Robert Liddington, Ph.D., professor at SBP, the research team used X-ray crystallography to find that six molecules of K-80003 bound to the tetramer interfaces.

“Our findings show that K-80003 creates a configuration that locks the tetramer into a tight ball, hiding all of its binding sites so it can’t trigger the PI3K pathway,” explains Liddington.

“We know tRXRα protein is specifically produced by tumor cells, while normal cells only produce full-length RXRα protein. Taken together, our findings explain the drug’s potency and specificity for cancer cells and why the compound has such low toxicity,” adds Zhang.

Because RXRα is a nuclear receptor, it has the ability to control gene expression. The mutation that creates tRXRα puts the protein into overdrive, activating PI3K in the cytoplasm and accelerating tumor growth. K-80003 acts like a Denver Boot, clamping down on tRXRα and eliminating these hyperactive growth signals. In addition, K-80003 often brings tRXRα back to the nucleus, which may further impair its function and enhance the drug’s therapeutic impact.

But that was not the end of the discovery. The team also found an LxxLL motif (a common sequence of amino acids) in the p85α protein, which acts as an intermediary between RXRα and PI3K. Identifying LxxLL sheds new light on how tRXRα binds to the cytoplasmic p85α protein and activates PI3K. When tRXRα becomes a tetramer, p85α can no longer bind to it.

These findings also help illustrate how nuclear receptors can function outside the nucleus, and how changes in both conformation and location can dramatically alter their function. In the long-term, understanding these mechanisms could lead to a variety of new therapies. But right now, this research shows why K-80003 has so much potential.

“The tRXRα protein is produced in almost all cancers,” said Zhang, “so the compound could be very effective for many different types, such as breast, liver and colon.”


Filed Under: Drug Discovery

 

Related Articles Read More >

Lokavant’s Spectrum v15 uses AI to cut trial-feasibility modeling from weeks to minutes
Prime time for peptide-based drug discovery 
Why smaller, simpler molecular glues are gaining attention in drug discovery
Glass vial, pipette and woman scientist in laboratory for medical study, research or experiment. Test tube, dropper and professional female person with chemical liquid for pharmaceutical innovation
Unlocking ‘bench-to-bedside’ discoveries requires better data sharing and collaboration
“ddd
EXPAND YOUR KNOWLEDGE AND STAY CONNECTED
Get the latest news and trends happening now in the drug discovery and development industry.

MEDTECH 100 INDEX

Medtech 100 logo
Market Summary > Current Price
The MedTech 100 is a financial index calculated using the BIG100 companies covered in Medical Design and Outsourcing.
Drug Discovery and Development
  • MassDevice
  • DeviceTalks
  • Medtech100 Index
  • Medical Design Sourcing
  • Medical Design & Outsourcing
  • Medical Tubing + Extrusion
  • Subscribe to our E-Newsletter
  • Contact Us
  • About Us
  • R&D World
  • Drug Delivery Business News
  • Pharmaceutical Processing World

Copyright © 2025 WTWH Media LLC. All Rights Reserved. The material on this site may not be reproduced, distributed, transmitted, cached or otherwise used, except with the prior written permission of WTWH Media
Privacy Policy | Advertising | About Us

Search Drug Discovery & Development

  • Home Drug Discovery and Development
  • Drug Discovery
  • Women in Pharma and Biotech
  • Oncology
  • Neurological Disease
  • Infectious Disease
  • Resources
    • Video features
    • Podcast
    • Webinars
  • Pharma 50
    • 2025 Pharma 50
    • 2024 Pharma 50
    • 2023 Pharma 50
    • 2022 Pharma 50
    • 2021 Pharma 50
  • Advertise
  • SUBSCRIBE